
Morpheus: Bringing The (PKCS) One To Meet the Oracle
Moosa Yahyazadeh
The University of Iowa

moosa-yahyazadeh@uiowa.edu

Sze Yiu Chau
The Chinese University of Hong Kong

sychau@ie.cuhk.edu.hk

Li Li
Syracuse University

lli101@syr.edu

Man Hong Hue
The Chinese University of Hong Kong

manhonghue@cuhk.edu.hk

Joyanta Debnath
The University of Iowa

joyanta-debnath@uiowa.edu

Sheung Chiu Ip
The Chinese University of Hong Kong

ipsheungchiu@gmail.com

Chun Ngai Li
The Chinese University of Hong Kong

1155110647@link.cuhk.edu.hk

Endadul Hoque
Syracuse University
enhoque@syr.edu

Omar Chowdhury
The University of Iowa

omar-chowdhury@uiowa.edu

ABSTRACT

This paper focuses on developing an automatic, black-box test-
ing approach called Morpheus to check the non-compliance of
libraries implementing PKCS#1-v1.5 signature verification with
the PKCS#1-v1.5 standard. Non-compliance can not only make
implementations vulnerable to Bleichenbacher-style RSA signa-
ture forgery attacks but also can induce interoperability issues. For
checking non-compliance, Morpheus adaptively generates inter-
esting test cases and then takes advantage of an oracle, a formally
proven correct implementation of PKCS#1-v1.5 signature standard,
to detect non-compliance in an implementation under test. We
have used Morpheus to test 45 implementations of PKCS#1-v1.5
signature verification and discovered that 6 of them are susceptible
to variants of the Bleichenbacher-style low public exponent RSA
signature forgery attack, 1 implementation has a buffer overflow,
33 implementations have incompatibility issues, and 8 implementa-
tions have minor leniencies. Our findings have been responsibly
disclosed and positively acknowledged by the developers.

CCS CONCEPTS

• Security and privacy→Digital signatures; Formal security

models; Logic and verification; Security protocols.

KEYWORDS

PKCS#1 signature verification; non-compliance checking; reference
implementation; adaptive combinatorial testing

ACM Reference Format:

Moosa Yahyazadeh, Sze Yiu Chau, Li Li, Man Hong Hue, Joyanta Debnath,
Sheung Chiu Ip, Chun Ngai Li, Endadul Hoque, and Omar Chowdhury. 2021.
Morpheus: Bringing The (PKCS) One To Meet the Oracle. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’21), November 15–19, 2021, Virtual Event, Republic of Korea. ACM, New
York, NY, USA, 23 pages. https://doi.org/10.1145/3460120.3485382

This work is licensed under a Creative Commons Attribution International 4.0
License.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8454-4/21/11.
https://doi.org/10.1145/3460120.3485382

1 INTRODUCTION

RSA digital signature scheme is a fundamental cryptographic prim-
itive that enjoys a widespread deployment in many different ap-
plication domains including secure communication protocols (e.g.,
SSL/TLS, IPSec), software signing, X.509 certificates, to name a few.
As an example, 95% of the X.509 certificates in the Censys dataset
[2] use RSA digital signatures. A common security requirement
for digital signature schemes is the (existentially) unforgeable un-
der chosen-message attacks property which we write in short as
resistant to existential forgery (REF) property. Realizing such guar-
antees with the RSA digital signature scheme at implementation
level requires carefully padding the hash digest of the message to
be signed using a secure padding scheme [40, 56].

One of the most prominent among these padding schemes is
the PKCS#1-v1.5 [45–47, 56]. Although some security properties
of PKCS#1-v1.5 signature scheme specification has been formally
proved [40], a significant number of its implementations have been
shown to suffer from some critical vulnerabilities [25, 33, 38, 39, 53].
The most severe among these implementation flaws have been
shown to enable an attacker to forge a signature without the knowl-
edge of the private key, especially when a small public exponent is
used. These attacks are variants of the Bleichenbacher-style low
public exponent RSA signature forgery [38] that have been around
for more than a decade. . Note that, the attacks on RSA signature
verification considered here is different from the padding oracle at-
tack, also attributed to Daniel Bleichenbacher [26], which exploits
RSA private-key operations and can manifest via various side chan-
nels [27, 41, 50, 55, 59]. With RSA signatures being implemented
in many different languages and platforms, implementation flaws
causing violations of the REF property can be catastrophic. It is
thus paramount to develop an approach to check an implementa-
tion’s non-compliance to the standard [45–47, 56]. Non-compliant
implementations can not only suffer from the violation of the REF
property but also induce interoperability issues.

Prior efforts that analyzed PKCS#1-v1.5 implementations have
been mostly manual [38, 53]. Recently, Chau et al. [33] developed an
approach based on symbolic execution for testing non-compliance
of PKCS#1-v1.5 implementations. However, due to the need for
intrusive source-code level changes and toolchain limitations (espe-
cially for programming languages that lack a mature LLVM front-
end to translate programs into the subset of LLVM IR supported

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2474

https://doi.org/10.1145/3460120.3485382
https://doi.org/10.1145/3460120.3485382
https://creativecommons.org/licenses/by/4.0/

by KLEE), their study only considered open source C implemen-
tation, leaving a large landscape of PKCS#1-v1.5 implementations
written in other programming languages untested and potentially
vulnerable. To make matters worse, PKCS#1-v1.5 have also been im-
plemented in embedded devices for which one only has black-box
access, further complicating non-compliance checking. To improve
the unsatisfactory state of affairs, in this paper, we set out to develop
an automated, black-box non-compliance checker called Morpheus.
Performing non-compliance checking in a black-box fashion makes
Morpheus agnostic to the subject implementations’ programming
languages, and thus enables it to cover a diverse set of PKCS#1-v1.5
libraries, many of which were not studied before.

As capturing the PKCS#1-v1.5 standard requirements warrants a
context-sensitive grammar, the underlying non-compliance check-
ing problem that Morpheus addresses can be stated as follows:
Given black-box access to a PKCS#1-v1.5 signature verification imple-
mentation I and the PKCS#1-v1.5 standard requirements represented
as a context-sensitive grammar Γ, is the grammar implemented by
I inequivalent to Γ? Unfortunately, this is an undecidable problem
even when the grammar implemented by I is given.
Proposed approach (Morpheus).Morpheus addresses this prob-
lem through the introduction of two components, namely, the input
sampler and the oracle. At a high level, to test implementation I ,
Morpheus’s input sampler keeps selecting concrete inputs from
the input space, and feeds them to both I and Morpheus’s oracle. If
responses from I and the oracle differ, the concrete input in question
is then an evidence of I being non-compliant. One can instantiate
the input sampler with any (grammar-based) fuzzer but due to
the lack of feedback information under the black-box settings, we
observed that the fuzzer-based input sampler was having limited
success in identifying non-compliance instances. To address this,
we developed a specialized input sampler, based on our domain
knowledge, which intelligently samples the input space in an adap-
tive fashion. This is similar to an adaptive, combinatorial testing
approach in which once a non-compliance (synonymously, leniency
in the implementation) is discovered by a generated test case, it
adaptively generates more test cases of the same class to reveal if
the leniency in the subject implementation can be exploited for
Bleichenbacher-style low public exponent RSA signature forgery.

We instantiateMorpheus’s oracle with a formally proven correct
implementation of the PKCS#1-v1.5 standard. We implement the
oracle in Gallina [34] and use Coq’s interactive theorem prover to
verify that the implementation complies with the requirements of
the PKCS#1-v1.5 standard.We then use Coq’s extractionmechanism
to obtain an OCaml source code.
Findings. To show the efficacy of Morpheus, we analyzed the
recent versions of 45 PKCS#1-v1.5 signature verification implemen-
tations, written in 18 different programming languages. We have
discovered that 40 of these libraries are non-compliant with the
standard. Among them, 6 implementations have leniencies leaving
significant areas of the PKCS#1-v1.5 encoded message structure
unchecked, enabling an attacker to launch the Bleichenbacher-
style low public exponent RSA signature forgery attack. For some
PKCS#1-v1.5 libraries (e.g., node-forge), the size of unchecked area
is so large that the Bleichenbacher-style low exponent signature
forgery, typically possible for e = 3, become practical even for e = 5
or e = 17.

Although e = 3 is seldom used currently by certificates on the In-
ternet [36], we note that small public exponents are not yet extinct.
From the Censys [2] certificates dataset (2019 snapshot) containing
a total of 1,234,185,668 certificates, we found that 0.07% has e = 3
and 0.14% has e = 17 as their RSA public exponents. More impor-
tantly, many Linux distributions continue to have some trusted root
CA certificates with e = 3 in their default CA bundle. e = 3 is also
sometimes mandated by key generation programs [5] and has been
historically recommended for better performance [37], especially in
resource-constrained devices. Also, mathematically it is interesting
to see how such leniency enable attackers to target slightly larger
public exponents, and how the forgery attack is counter-intuitively
easier to succeed under a choice of parameter that is supposed to
improve security (i.e., using a longer RSA modulus).

We have found other minor leniencies in 8 libraries that cause
some invalid signatures to be mistakenly accepted as valid signa-
tures. Although these leniencies do not directly lead to signature
forgeries, there are some that contribute towards the success of at-
tacks when exploited in tandem. Besides these semantic correctness
issues in the lenient libraries’ signature verification logics, we have
also discovered 1 buffer overflow vulnerability in Relic. Our results
also show that 33 libraries have incompatibility issue where a valid
signature, whose encoded message uses implicit NULL for hash
algorithm parameter, is being mistakenly rejected, which can create
an interoperability issue. Based on a random sampling performed
on Censys certificates dataset, we observed 4% of the certificates
use implicit NULL parameter in their signatures.
Responsible disclosure. Following the practice of responsible
disclosure, we have notified all of the vendors mentioned in this
paper about our findings. The vendors have also acknowledged our
findings and 12 CVEs have been assigned. Furthermore, we have
participated in the design and/or verification of the patches.
Contributions. This paper makes the following contributions:

(1) We have implemented a formally verified PKCS#1-v1.5 sig-
nature verification that can be used as the oracle to perform
the non-compliance checking of PKCS#1-v1.5 libraries.

(2) We propose an adaptive combinatorial testing approach
(Morpheus) to generate effective test cases — adhering to
PKCS#1-v1.5 signature scheme’s context-sensitive grammar
— in order to do non-compliance checking of a diverse set of
PKCS#1-v1.5 libraries in a black box fashion.

(3) We evaluated Morpheus by analyzing 45 PKCS#1-v1.5 li-
braries and discovered 6 of them to suffer fromBleichenbacher-
style low exponent signature forgery, along with other bugs.
We responsibly disclosed our findings to the affected vendors,
and contributed in the design and/or testing of the proposed
patches. Our findings are also accompanied by theoretical
analysis and proof-of-concept attacks in Section 6.

2 PRELIMINARIES

The PKCS#1-v1.5 signature scheme delineates signature generation
(i.e., sign) operation and signature verification (i.e., verify) operation.
We use the notation in Table 1 as a reference throughout the paper.
Signature generation operation. Given d , m, and H as input,
the signature generation operation outputs S as follows. It first
computes the hash value ofm based on the given hash function H

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2475

(e.g., SHA-256). It then encodes the algorithm ID of the used hash
function and the hash value into the DER (Distinguished Encoding
Rules [10]) encoded ASN.1 value of the DigestInfo type.

DigestInfo ::= SEQUENCE {
digestAlgorithm AlgorithmIdentifier,
digest OCTET STRING

}

in which digestAlgorithm is the structure where the algorithm
ID resides and digest is the structure for the hash value. Let ASN.1
DER encoding of the DigestInfo be T , it then forms the encoded
message, EM , by concatenating these bytes as follows:

EM = 0x00 || BT || PS || 0x00 || T

where 0x00 is the value for leading byte, BT for signature scheme is
0x01, PS is padding string at least 8 octets long with hexadecimal
value 0xFF for each padding byte, ending with a byte with value
0x00 showing the end of padding. All these bytes are considered as
a prefix toT , and the length of PS is computed as |PS| = |n | − |T | −3
to make the length of the encoded message equal to the length
of the public modulus (i.e., |EM | = |n |). Once EM is formed, the
signature S is computed as S = EMd mod n.
Signature verification operation. Given (n, e),mv , S , andH , the
signature verification operation verifies whether S is a valid signa-
ture. For this, it first checks if the length of the signature S is equal
to |n |; otherwise, it returns “invalid signature”. Then, it obtains the
encoded message from S using EMv = Se mod n. After this, it can
follow one of the following approaches to complete verification.

Encoding approach: In this approach (a.k.a., construction-
based approach), the verifier first computes H (mv) and uses it
to construct the ASN.1 DER encoding of DigestInfo to eventu-
ally form its version of the encoded message, EM ′

v , following the
same approach as the signer. Once EM ′

v is constructed, the verifier
checks EM ′

v =
? EMv . In case they are equal, the verifier outputs

“valid signature”. Otherwise, “invalid signature” is returned.
Decoding approach: In this approach (a.k.a., parsing-based ap-

proach), the verifier parses EMv and strips off the prefix bytes to
obtain the hash value and digestAlgorithm structure from T . It
then checks that the digestAlgorithm to be consistent with the
given H , and once passed, the verifier computes its own version
of the hash value of the given message (i.e., H (mv)). Finally, the
computed hash value is compared against the obtained hash value
(from the encoded message EMv). If they are equal, the verifier
outputs “valid signature”. Otherwise, it returns “invalid signature”.
To NULL or not to NULL. The PKCS#1-v1.5 standard has evolved
through multiple RFCs (see Appendix A), and a point of confusion
concerns the parameter field of the hash algorithm meta-data en-
coded in the DER format. As the SHA family of hash functions do
not need a parameter, the question then becomes how should this
NULL parameter be encoded. The initial recommendation was that
the parameter field be absent for such hash functions; denoting an
implicit NULL parameter. The recommendation was later changed
to have the parameter field be present with an explicit NULL. Re-
cently, this recommendation has been updated to allow both explicit
and implicit NULL values [56]. As discussed in Section 6, confusions
over this has led to some incompatibility issues.

Table 1: Reference notation

Symbol Description

n RSA public modulus
|n | Length of RSA public modulus
e RSA public exponent

(n, e) The signer’s public key
d RSA private exponent
m Message to be signed
mv Message received by verifier
EM Encoded message, an octet string input to the sign operation
S Signature, an octet string computed as EMd mod n by signer

EMv Encoded message, an octet string computed as Se mod n by verifier
H Hash function

H (ms) Sign operation version of H(m), contained inside EMv
H (mv) Verify operation’s computed hash ofmv
EM ′

v Encoded message, an octet string constructed by verify operation
BT Block type byte
PS Padding string
T ASN.1 DER encoding of the DigestInfo value

3 OVERVIEW OF MORPHEUS

In this section, we discuss the problem definition Morpheus ad-
dresses along with its high-level approach.

3.1 Problem Definition

In this paper, we focus on checking whether a given implementation
(I) of PKCS#1-v1.5 scheme is non-compliant with its standard. The
requirements of PKCS#1-v1.5 standard can be represented as a
context-sensitive grammar Γ. This is due to the context-sensitivity
needed to capture the requirements associated with the PS (padding
string) and T (ASN.1 DER encoded DigestInfo) fields of the encoded
message EM. Based on this, we can define our problem as follows:
Given a context-sensitive grammar Γ capturing the requirements
of the PKCS#1-v1.5 standard and given only black-box access to an
implementation I of the PKCS#1-v1.5 scheme, is I non-compliant with
Γ? We say I is non-compliant with the standard Γ if and only if there
exists an input x such that one of the following holds: NC1) x < Γ
but I (x) = true; NC2) x ∈ Γ but I (x) = false. We write x ∈ Γ (resp.,
x < Γ) to denote that x is accepted (resp., rejected) by the grammar
Γ. Similarly, an implementation I of PKCS#1-v1.5 scheme returns
true for a given input x if and only if x is legitimate according to I .

In the non-compliance checking problem, we are only given
black-box access to I . Even if wewere given access to the underlying
context-sensitive grammar Γ⋆ that I implements, checking non-
compliance with the standard Γ would entail checking the non-
emptiness of the following two sets: (a) Γ⋆\Γ; (b) Γ\Γ⋆. As checking
non-emptiness of a context-sensitive grammar is an undecidable
problem, checking non-compliance problem is also undecidable.

3.2 Non-compliance and Security

Non-compliance to the PKCS#1-v1.5 scheme may result in breaking
the security of a RSA signature scheme. There are basically four
classes of attacks applicable to any digital signature scheme [63, 64],
which are listed as follows from the strongest to the weakest secu-
rity assumptions: (i) total break; (ii) universal forgery; (iii) selective
forgery; (iv) existential forgery. A signature scheme is deemed to
have the strongest security requirement, if it is secure against the
weakest attack (i.e., existential forgery). The strongest security re-
quirement of a signature scheme is thus Resistance to Existential
Forgery (REF), which ensures that for a secure signature scheme

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2476

there does not exist a message for which an attacker can forge a
legitimate signature without knowing the private key.

We now discuss which types of non-compliance to the PKCS#1-
v1.5 standard can result in an insecure RSA digital signature scheme
implementation (i.e., breaking REF). In what follows, we use I to
denote the implementation-under-test of PKCS#1-v1.5 standard,
S to denote the universe of all signatures, and Γ to denote the
context-sensitive grammar capturing the PKCS#1-v1.5 standard re-
quirements. We characterize the non-compliance into the following
3 sets, and show their relationships to REF security property.

Leniency Set (LI). This set contains signatures that I mistakenly
accepts but is rejected by Γ. Concretely, LI = {s | s ∈ S ∧ s <
Γ ∧ I (s) = true}.

Forgery Set (FI). This is the set of signatures that I mistakenly
accepts (albeit, rejected by Γ) and causes I to be susceptible to
existential forgery attack. Clearly, we have FI ⊆ LI .

Overly-Restrictive Set (ORI). This is the set of signatures that I
mistakenly rejects whereas it is accepted by Γ. Concretely, ORI =
{s | s ∈ S ∧ s ∈ Γ ∧ I (s) = false} and ORI ∩ LI = ∅.

Operationally, we say I is non-compliant to the standard Γ iff
LI , ∅ or ORI , ∅. A given PKCS#1-v1.5 implementation-under-
test I has the REF property iff the set FI for I is empty (i.e., FI = ∅).

3.3 High-Level Approach of Morpheus

For checking non-compliance of a PKCS#1-v1.5 implementation I
with the standard Γ, Morpheus tries to find signatures s ∈ S such
that s ∈ LI , s ∈ FI , or s ∈ ORI . As the cardinality of S can be large
(i.e., 22048 for a 2048-bit RSA exponent), exhaustively enumerating
the space S is infeasible.

For finding non-compliance instances, Morpheus uses an input
sampler that samples the space S intelligently to find signatures to
test a given implementation I . To check whether a given signature
s ∈? LI or s ∈? ORI , we need a representation of the standard Γ. For
Γ, Morpheus uses a formally verified implementation of PKCS#1-
v1.5 standard Ioracle (oracle) as a proxy to test whether s ∈? Γ during
non-compliance checking (i.e., Ioracle(s) = true ⇔ s ∈ Γ).

4 THE ORACLE OF MORPHEUS

Morpheus’s oracle is a formally proven correct implementation of
PKCS#1-v1.5 signature verification standard. Developing the oracle
involves four main steps: (1) consulting the standard to extract the
specifications and formalizing them as the correctness criteria; (2)
developing the actual implementation of PKCS#1-v1.5 signature
verification function; (3) proving that the implementation satisfies
the specification using an interactive theorem prover (ITP); and
finally (4) extracting an executable binary of the oracle to be used
as a reference implementation for further non-compliance checking
purposes. We use Coq [34] as the interactive theorem prover.

4.1 Formalizing the Specifications

From the English descriptions provided in the RFC8017 standard,
we have formalized the specifications of the signature verification
in Coq’s specification language, Gallina. The formal specification
serves as the correctness criteria for the signature verification func-
tion. Using the reference notation in Table 1, the original inputs to

PKCS#1-v1.5 signature verification are S ,mv , H , and (n, e). Sepa-
rating cryptographic primitives (such as hash function operation
and modular exponentiation) from signature verification operation,
we can invest our efforts to the verifier’s logic itself. We design the
interface so that instead of the signature value S , the oracle accepts
the encoded message EMv (as a buffer calculated by Se mod n). For
the next argument, instead of themessagemv , it takes the computed
hash value hv = H (mv). Since all cryptographic operations are per-
formed outside this verification, we can replace the signer’s public
key (n, e) in the inputs with the length of public modulus n, denoted
by nl . Based on that, we can describe Signature verification’s
correctness using the following theorem:
Theorem 4.1 [Signature verification correctness]

∀ (EMv , hv : l ist byte)(nl : nat)(H : hash id),

((Signature verification EMv nl hv H) = true) ⇐⇒

((Pow 2 (Log2 nl) = nl) ∧
((Length EMv) = nl) ∧

((Length hv) = (H2Len H)) ∧

(EMv [0] = 0x00) ∧

(EMv [1] = 0x01) ∧

(∃ (l1, l2 : nat)(a1, a2 : asb),
((H2Asn H hv) = ⟨⟨a1, l1 ⟩, ⟨a2, l2 ⟩⟩) ∧

(Asb is valid a1) ∧ (Asb is valid a2) ∧

((nl − l1) − 3 >= 8) ∧ ((nl − l2) − 3 >= 8) ∧
(((∀ (i : nat), ((i >= 2) ∧ (i < ((nl − l1) − 1))) =⇒

(O[i] = 0xFF)) ∧

(EMv [((nl − l1) − 1)] = 0x00) ∧

(∀ (j : nat), ((j >= 0) ∧ (j < l1)) =⇒

(EMv [((nl − l1) + j)] = (Asb2Byte a1)[j]))
) ∨

((∀(i : nat), ((i >= 2);∧ (i < ((nl − l2) − 1))) =⇒
(EMv [i] = 0xFF)) ∧

(EMv [((nl − l2) − 1)] = 0x00) ∧

(∀(j : nat), ((j >= 0);∧ (j < l2)) =⇒

(EMv [((nl − l2) + j)] = (Asb2Byte a2)[j]))))))

where nl = |n|, hv = H (mv), and H is an enumeration denoting
the hash function whose element is drawn from the set hash id = {

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512}. Here, (Pow x y)
is the power function that raises x toy whereas (Log2 x) is the base-
2 logarithm function. We have (Length x) function that takes a list
as input and returns its length. (H2Len x) function is defined such
that given a hash function ID as input, it returns the length of hash
value of to-be-signed message. Also, asb is the type for ASN.1 DER
encoded portion of the signature scheme structure and (H2Asn x
y) is a function that given x as a hash function ID and y as a hash
value byte list, it returns a pair of pairs ⟨⟨a1, l1⟩, ⟨a2, l2⟩⟩ such that
a1 is the constructed ASN.1 DER encoded bytes of type asb which
contains the given hash function ID and hash value byte list with
explicit hash algorithm parameter; and l1 is a1’s length, while a2
and l2 are for the implicit NULL algorithm parameter counterpart.
(Asb Valid x) is a function that checks whether the given asb
structure, x , is valid (i.e., it conforms to the ASN.1 DER encoded

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2477

bytes of the signature scheme). Finally, (Asb2Byte x) takes asb
typed value, x , and returns its serialized version.

Basically, Theorem 4.1 has two parts that express the following:
(1) If the oracle returns true for any input, then that input is

valid according to the formal specifications (i.e. soundness);
(2) For all inputs accepted by the specification, the oracle must

return true (i.e. completeness).

4.2 Developing the PKCS#1 Implementation

Our oracle follows the construction-based approach where two
versions of the encoded message are constructed (for both explicit
and implicit NULL parameter cases) where they are compared for
equality against the input encoded message (see Algorithm 1).

Concretely, our oracle named Signature verification first
checks whether nl is the power of two. It also checks that the
EMv ’s length is equal to the public modulus length nl . It then
checks that the length of hash value matches with a given hash
function’s output length. If these checks fail, then the oracle re-
turns f alse ; otherwise, it builds the ASN.1 DER structure from the
given hash function H and the hash value hv for both explicit and
implicit NULL parameter cases using the H2Asn function. Signa-
ture verification then constructs two PKCS#1-v1.5 signature
scheme structures by adding the leading byte, block type byte,
padding bytes, and the end of padding to the both ASN.1 DER
versions.

The necessary number of padding bytes is computed as (nl −l)−3
for those two PKCS structures, where l is replaced with the ASN.1
sub-structure’s length for each version (i.e., l1 for explicit version
and l2 for implicit version). Once the PKCS structures are con-
structed, they are checked for validity with Pkcs format is valid
(Algorithm 2). This function verifies that all components in PKCS
structure have a correct value and a correct length. If this check
fails, Signature verification returns f alse; otherwise, it con-
verts both PKCS structures (for explicit and implicit formats) into
the list of bytes (via Pkcs format to byte function) and then it
checks the equality between the PKCS converted byte list and the
given encoded message EMv . Only when EMv matches with either
of the explicit or implicit PKCS byte lists, true is returned.

4.3 Proof Sketch

Our proof proceeds by proving both soundness and completeness
parts of the correctness theorem. We provide a proof sketch here.
Soundness (i.e., first direction ⇒): (1) We assume
(Signature verification EMv nl hv H) = true , then
we prove the consequent of the logical implication; (2) By
unfolding Signature verification definition from Algorithm 1
in our hypotheses section, we can destruct the condition of the
first if and then prove:

((Pow 2 (Log2 nl) = nl) ∧ ((Length EMv) = nl)

∧ ((Length hv) = (H2Len H)))

(3) Continuing down the first if’s true branch, and having validated
the constructed PKCS format given the Pkcs format is valid
algorithm in 2, we get into the second if’s true branch where the
constructed PKCS format is converted into byte list. No matter
which versions of structure it is (i.e., structure for explicit or implicit

Algorithm 1 Signature verification’s definition

Definition signature verification (EMv : list byte) (nl : nat) (hv : list
byte) (H : hash id) : bool :=

if (((Is power of two nl) &&
((Length EMv) =? nl)) &&
((Length hv) =? (H2Len H))) then

match (H2Asn H hv) with

| alp a1 l1 a2 l2 ⇒
if (Pkcs format is valid
(pkcs (0x00) (0x01) (Repeat 0xFF ((nl - l1) - 3)) (0x00) a1))

&& (Pkcs format is valid
(pkcs (0x00) (0x01) (Repeat 0xFF ((nl - l2) - 3)) (0x00) a2))

then

(List eq EMv (Pkcs format to byte
(pkcs (0x00) (0x01) (Repeat 0xFF ((nl - l1) - 3)) (0x00) a1))
||
List eq EMv (Pkcs format to byte
(pkcs (0x00) (0x01) (Repeat 0xFF ((nl - l2) - 3)) (0x00) a2)))

else false
end

else false.

Algorithm 2 Pkcs format is valid’s definition in Coq

Definition Pkcs format is valid (st : pkcs format) : bool :=
match st with

| pkcs leading byte block type byte padding bytes padding end asn block

⇒ ((Byte.eqb leading byte 0x00) &&
(Byte.eqb block type byte 0x01) &&
(Padding bytes length ge 8 and all ff padding bytes) &&
(Byte.eqb padding end 0x00) &&
(Asb is valid asn block))

end.

versions), we can prove that the first and second elements in the lists
are 0x00 and 0x01, respectively, based on the PKCS construction
and the subsequent serialization; hence, we can prove:

(EMv [0] = 0x00) ∧ (EMv [1] = 0x01)

(4) Since the two versions of PKCS structure are validated in the
second if’s true branch, and those contain the ASN.1 sub-structures
generated by H2Asn, then the ASN.1 sub-structures must be valid.
That is, having Pkcs format is valid for a PKCS structure im-
plies Asb is valid for the engulfing ASN.1 sub-structure (see al-
gorithm 2). Therefore, we have the proofs for:

(Asb is valid a1) ∧ (Asb is valid a2)

(5) For a valid PKCS format, it has been checked
that the padding bytes are at least 8. It is done by
Padding bytes length ge 8 and all ff function inside
the algorithm 2, Pkcs format is valid. Therefore, if we just
subtract the lengths of ASN.1 sub-structure and three bytes from
the length of PKCS structure (for leading byte, block type byte and
padding end byte), we will end up with the length of padding bytes
block which is at least 8 bytes. Therefore, we have proved:

((nl − l1) − 3 >= 8) ∧ ((nl − l2) − 3 >= 8)

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2478

(6) Given the List eq’s correctness as well as being in the second
If’s true branch from the initial assumption, we know that one of
the List eq function calls in the disjunctionmust be true. Therefore,
EMv must be equal to one of the PKCS structures.
∴ first direction (⇒) is proved.
Completeness (i.e., second direction ⇐): (1) We assume the right
portion of the equivalence to be true, then we need to prove
(Signature verification EMv nl hv H) = true; (2) Given
the following conjunction in our hypotheses section,

((Pow 2 (Log2 nl) = nl) ∧ ((Length EMv) = nl)

∧ ((Length hv) = (H2Len H)))

we can prove that the conditions of the first if statement in
Signature verification definition are true; (3) Then, using the
following lemma,
Lemma ifT : b ⇒ (if b then true else false) = true.
we rewrite the second if’s expression. Now we have to prove the
body of the second if is true as well as its assumed condition ex-
pression; (4) The body of the second if has a disjunction; so, we
have to prove them one at a time. For the left side of the disjunction,
we unfold the definition of Pkcs format to byte which after
simplification, we get the following expression:

(List eq EMv [0x00; 0x01] + + (Repeat 0xFF (n − l1 − 3))
+ + [0x00] + + (Asb to byte a1))

(5) On the other hand, we have in our hypotheses a specification
expressing a list of byte. So, we use the following Lemma:

Lemma build from spec :
∀ (alen blen : nat) (a b : list byte),
((((Datatypes.length a = alen ∧

Datatypes.length b = blen) ∧
7 < alen - blen - 3) ∧
a[0] = 0x00) ∧
a[1] = 0x01) ∧
(∀ i : nat, (1 < i) ∧ (i < alen - blen - 1) ⇒ a[i] = 0xFF) ∧
a[(alen - blen - 1)] = 0x00 ∧
(∀ j : nat, (0 ≤ j) ∧ (j < blen) ⇒ a[(alen - blen + j)] = b[i]
⇒

a = [0x00;0x01] ++ (Repeat 0xFF (alen - blen - 3)) ++ [0x00] ++ b.

to apply it on the specification we have in the hypotheses section.
Now we can rewrite the expression we have in our proof section
with the one we have achieved by applying the above lemma, and
thus get the following expression: (List eq EMv EMv), which
by simplification and List eq correcness lemma we have it to be
true; (6) Same steps also apply to the right side of the disjunction
as above and ∴ we get the proof completed. The full formal proof
in Coq and other resources can be found in [20].

4.4 Extraction

After proving Theorem 4.1, we extract an OCaml program out of
the Gallina description of the oracle using Coq’s built-in extraction
feature. We put the OCaml program inside a wrapper code that
handles the command line arguments. Finally, the OCaml code will
be compiled to achieve the oracle’s executable binary.

5 TESTINGWITH MORPHEUS

We now describe the concrete approach taken by Morpheus to find
noncompliance in a PKCS#1-v1.5 signature verifier.

5.1 Architecture of Morpheus

Morpheus comprises of two main components, namely, the input
sampler and bug detector (See Figure 1). The input sampler samples
the possible input space of PKCS#1-v1.5 encoded messages and
selects interesting concrete inputs, possibly using feedback from
the bug detector. These concrete inputs are then fed into the bug
detector. The bug detector takes these inputs, then does the follow-
ing for each input in parallel: (1) it pre-processes the input; (2) feeds
the input to both the oracle and implementation-under-test; (3)
compares their outputs, and if there is a discrepancy, then reports
the input as an evidence of non-compliance of the test subject; (4)
finally, it reports back the output comparison status as a feedback
to the input sampler. The pre-processing is done to take into ac-
count the difference between the interfaces of the oracle and the
test subject. The status of the output comparison is used adaptively
by the input sampler for generating more inputs of a particular
class when a non-compliance has been detected. We now provide
more details on the Morpheus’s input sampler component as the
functionality of the bug detector has been discussed already.

Calling oracle

Pre-processing

EOP

testcases

Oracle

report

Calling target

Target

Multi-
processing
manager

Feedback on output comparison

per each
process testcase

signed testcase
result

result
yes

no

Bug detector

Input
Sampler

MORPHEUS

Discrepancy?

Figure 1: The high-level architecture of Morpheus

5.2 Insight of Morpheus’s Input Sampler

Onemay question the rationale of designing a custom input sampler
for Morpheus instead of using a mutation engine from an existing
fuzzer. As we will demonstrate in Section 6.2.1, due to the lack of
domain-specific knowledge, existing mutation approaches fail to
achieve the same level of proficiency in identifying non-compliance
instances compared to Morpheus’s input sampler.

The input sampler we design follows the adaptive combinato-
rial testing approach, which takes the union of two different test
generation strategies, namely, combinatorial testing and adaptive
domain-specific test generation strategy. Precisely, Morpheus indi-
vidually generates inputs with each of these approaches and then
unify them into a single set of test cases. For both these approaches,
we decompose the PKCS#1-v1.5 encoded message (i.e., EMv) into
different components (e.g., BT, PS).

On one hand, combinatorial testing is a general testing method
to verify interactions among test factors. It has been traditionally
used for software testing with the goal of reducing the cost of test
case generation while maintaining the effectiveness, with the key
insight that not every input parameter contributes to every failure
[28, 35, 51, 61, 62]. In our context, each of the components serve
as a test factor in our test generation. Precisely, for each of the
components, we have a set of interesting byte sequences, chosen

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2479

based on the neighboring components, that we can use to test
an implementation. We combinatorially combine these different
interesting bytes sequences for each component to generate test
cases. Note that, we do not shuffle the order of the components as
doing so generally destroys the structure and are rightly rejected
by most implementations. On the other hand, the adaptive domain-
specific test generation strategy as the name suggests uses domain-
specific knowledge about PKCS#1-v1.5 and the Bleichenbacher-
style low public exponent RSA signature forgery. It particularly
leverages the notion of byte stealing and byte hiding. Without loss
of generality, we will explain these two concepts using an example.
Suppose an implementation does not check the well-formedness
(e.g., the correct length) of two components c1 and c2, each of which
is 8-bytes long. In this case, we can possibly steal a byte from c1
and hide it in c2. Concretely, we have a test case in which the
length of c1 is 7-bytes whereas c2 is 9-bytes long. The amount of
bytes one can steal should be equal to the amount of bytes one can
hide to make sure that the resulting message is always of length n
(i.e., the RSA modulus size). As discussed in section 6, stealing and
hiding bytes allow an attacker to possibly launch signature forgery
attacks on an implementation. The more bytes one can hide, the
higher the chances of such an attack. The adaptive nature of this
test generation comes into play when the input generator observes
as feedback that it was able to steal a byte from one component
and hide it in another component. It then adaptively tries to steal
and hide more and more bytes.

5.3 Component Decomposition

A PKCS#1-v1.5 encoded message has the following structure de-
picted in Figure 2. The length of padding bytes is 8+Lrp where Lrp
is the length of the rest of padding bytes, excluding the minimum
required 8 bytes. The ASN.1 DER component’s length is denoted
by Lasn variable and its value is denoted using ψ representing a
sequence of bytes. Given that we have |n | = 1+1+8+Lrp +1+Lasn .

ASN.1 DER-
encoded bytes

Leading
byte

Block
type byte Padding bytes Padding

end byte

Ψ0x00 0x01 0xFFFFFFFF … FF 0x00

Components:

Correct values:

Length (bytes): 1 1 8 + !!" 1 !#$%

Figure 2: PKCS#1 v1.5 encoded message structure

A closer look at the ASN.1 DER component brings us to the
internal structures illustrated in Figure 3, for the case it uses the
explicit hash algorithm parameter. Besides the correlations within
TLV triplets (i.e., ⟨Type,Lenдth,Value⟩), there is a relation between
the value of hash ID value component and the length of hash value’s
value. For example, if we use SHA-256 as the hash function, then
HID = 0x608648016503040201 (which is an object identifier for
SHA-256) and since SHA-256 produces a 256-bit (32 bytes) hash
value, the length of the hash value’s content octet must be 32 bytes
(i.e., Lhvv = 0x20). Understanding this internal structure, we can
also conclude Lasn = Lasb + 2.

By flattening ASN.1 DER structure, we can decompose an en-
coded message EMv structure into 17 components, which are then

ASB
Type

ASB
Len.

Hash
Algo.
Type

0x30 0x30

Components:

Correct values:

Length (bytes): 1 !!"# !!$$

ASB Value

Hash
Algo.
Len. Hash Algo. Value

Hash
Val.

Type

Hash
Val.
Len.

Hash
Val.

Value

Hash
ID

Type

Hash
ID

Len.

Hash
ID

Value

1 1 1 1 1 1 1

!%&' !!%(0x06 !!"# "#$ 0x04 !!$$ "%%

Hash
Param.
Type

Hash
Param.

Len.

Hash
Param.
Value

0x05 0x00

1 1 0

Figure 3: ASN.1 DER encoded structure with explicit hash

algorithm parameter

Mutator< !,", #,$, % >

Selected
component

! + ”#"#$$”,∅
(! + ”#%"&'(')&_0_*%&ℎ_$'"_” + +, ,[0])

(! + ”#%"&'(')&_-_*%&ℎ_$'"_” + +, ,[-])
(! + ”#%"&'(')&_0_*%&ℎ_$'"_” + +
+ 1,.'/'0&(, 0 , + + 1))
(! + ”#%"&'(')&_-_*%&ℎ_$'"_” + +
+ 1,.'/'0&(, - , + + 1))

(! + ”#(0"12-_*%&ℎ_$'"_” + +,.0"12-(+))

(! + ”#(0"12-_0//'"1_*%&ℎ_$'"_” + +
+ ., 3 + .0"12-(.))

…
…

…
…

…

Figure 4: Mutator inside the testcase generator

used by the combinatorial testing. In fact, our adaptive combina-
torial test case generator uses the component specifications to
construct the test cases; discussed below.

5.4 Combinatorial Testing

Nowwe discuss first how components are specified in combinatorial
testing and then how one uses them to generate test-cases.

Component specification. A component is specified using 5-
tuple ⟨N ,O,L,V , I ⟩, where N is of string type representing the
component name;O is an integer type representing the order of the
component within the whole sequence of byte string; L represents
the correct length of the component (in bytes); V is the correct
value for this component; and I is an array list of values of interest
for the component. Note that, for a given component c , its field I is
manually determined, possibly based on neighboring components.
As an example, ⟨“leading byte”, 0, 1, 0x00, [0x01, 0xFF]⟩ describes
leading byte component which mandates the test case generator
to place its candidate value at the first of the generated sequence
for the test case (i.e., 0 index); and occupies 1 byte (i.e., the correct
length is 1) whose correct value is 0x00. It also suggests some values
of interest from [0x01, 0xFF] list to be used in test case generation
process. These specific values are suggested because these are also
the values of some neighboring components.

Other parameters. Besides the above 17 components of the
encoded message structure (EMv), the signature verification algo-
rithm accepts other arguments (e.g., size of modulus, hash algo-
rithm, the received message). To reduce the search space, the test
generation approach fixes those other parameters.

Component mutator.When the test generation approach se-
lects a component c for analysis, the component mutator randomly
chooses a set of values from the interesting values I as part of the
c’s component specification (See Figure 4). Each element of the
interesting values I for a given component c is pair of the form
⟨ℓ,b⟩ where the b field is actual byte sequence (in hexadecimal) to
be used for testing whereas the ℓ field is a descriptive label used for
debugging purposes capturing the exact mutation performed on

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2480

the desired byte sequence. Note that, these interesting values can
be described to be parametric and we use the following macros to
define them. The Repeat(x ,y) macro returns a byte sequence that
repeats y times the input byte sequence x whereas the Random(y)
macro returns a y-byte random byte sequence.

Test case generator. The combinatorial test case generator
takes three argumentsmin,max , and C where C is the component
specification (discussed before). It is responsible for generating test
cases by mutating x components wheremin ≤ x ≤ max . At each
step, it randomly selects x components to mutate. For each of those
components, their corresponding component mutators are called.
Each component mutator returns a random number of the mutated
byte sequences for that component. A cartesian product is taken
between the different component byte sequences where unmutated
components use their original value. As an example, suppose x = 2
and hence two components ci and c j will be randomly selected
for mutation. Let us also suppose that component mutators for ci
and c j returned y and z, respectively, number of mutated values to
consider. In that case, the test case generator will end up with y × z
possible test cases. Note that, from these test cases, we throw away
any test case which results in an encoded message whose length is
greater than the RSA modulus as implementations trivially reject
those test cases.

5.5 Adaptive Test Generation

At each step, our adaptive domain-specific test generation strategy
randomly selects a component c1. It then tries to randomly select a
byte to steal from c1 and hide it in all other remaining components
c2. This results in c1 to decrease its length by 1 whereas c2’s length
increases by 1. Stealing byte is analogous to deleting a byte from
c1 whereas hiding a byte in c2 is analogous to adding a random
byte to c2. If the stealing and hiding operations result in a signature
rejected by the oracle but accepted by the implementation-under-
test, then the test generator would try to steal and hide more bytes,
and in some cases also search the range of accepted values. This
way, the test generator can identify the amount of bytes (and values)
the attacker can use to launch a Bleichenbacher-style low public
exponent RSA signature forgery attack.

6 EVALUATION

In this section, we first demonstrate the efficacy of Morpheus in
finding non-compliance in recent implementations, and then com-
pare it against some general-purpose fuzzers and a recent work [33].

6.1 Findings

We evaluated Morpheus against 45 implementations of PKCS#1-
v1.5 signature verification and found 9 of them are lenient, while
33 implementations have incompatibility issue. Table 2 shows a
summary of Morpheus’s test results against various PKCS#1-v1.5
implementations. Among 9 lenient implementations, we have dis-
covered 6 of them suffer from Bleichenbacher-style low public
exponent RSA signature forgery, 1 implementation is susceptible
to buffer overflow attack, and 8 implementations with some minor
leniencies (i.e., accepting signatures that should have been rejected
but the leniencies are such that they cannot be exploited for signa-
ture forgery). There are also 5 implementations with no bugs found.

Here we discuss the significant findings and the related attacks, and
leave the details of other leniency in Appendix D. For details on the
concrete parameter values used in our evaluation, see Appendix B.

6.1.1 node-forge (v0.10.0). Forge library [3] contains a native im-
plementation of the TLS protocol in JavaScript and a set of cryp-
tography utilities for application development. The PKCS#1-v1.5
signature verification in node-forge employs decoding approach.
Using Morpheus, we found that it suffers from the following ex-
ploitable vulnerabilities in its verification logics.

1) Accepting less than 8 bytes of padding: The node-forge PKCS#1-
v1.5 signature verification implementation does not check whether
PS has a minimum length of 8 bytes. After root-cause analysis, we
found that after the block type value is checked to be 0x01 (line 1 in
Appendix D.1.1), the implementation skips all padding bytes until
it reaches to the end of padding. This leniency enables an attacker
to steal all the padding bytes and then inject new bytes (with same
length as those stolen) in other places that are left unchecked, which
can be used together with the other findings below for signature
forgeries.

2) Ignoring digestAlgorithm structure (CVE-2021-30247): Once
the encoded message is obtained from modular exponentiation,
node-forge decodes the structured message to obtain the hash
value. However, we found that node-forge only checks the ob-
tained digest value (by comparing it against the computed hash
value of the received message) and ignores verifying the decoded
digestAlgorithm structure, leaving some unchecked area ex-
ploitable for attacker to launch signature forgery.

3) Accepting trailing bytes (CVE-2021-30249): node-forge fails to
check that after DigestInfo ASN.1 structure, there should not be
any trailing bytes. This is a classical flaw previously shown in other
implementations as well [38]. Together with the fact that node-
forge accepts less than 8 bytes of padding as described above, this
creates an large unchecked room exploitable for signature forgery.

◦ Signature forgery: Based on our findings, node-
forge would accept a malformed ÊMv in the form of
0x00 || 0x01 || 0x00 || T || GARBAGE. Knowing this,

the attacker can prepare ÊMv where T contains a hash of an
attacker-chosen message m̂, and GARBAGE contains some fixed
values (e.g., all 0xFF..FF) as the trailing bytes. One can then
take the e-th root of ÊMv to find the attack signature Ŝ (without
knowing the private exponent). Notice that the attacker-prepared
ÊMv might not be a perfect power of e, and thus Ŝ might not be
the perfect e-th root of ÊMv . However, as long as the imprecision
stays in the unchecked trailing GARBAGE, the signature forgery
would succeed. To further maximize the number of unchecked
GARBAGE bytes, we can exploit the vulnerability of ignoring
digestAlgorithm to modify T such that the digestAlgorithm
structure in DigestInfo encoded structure is replaced with a
minimum number of bytes that makes the decoding operation of
node-forge pass through (e.g., 0x0100 where 0x01 is the ASN.1 tag
for boolean and 0x00 denotes a zero-length content). This works
because after the value is decoded, it is not going to be checked
by the verifier, and shortening the digestAlgorithm structure
allows the attacker to have even more trailing garbage bytes.

The difficulty of finding a working Ŝ is bound by the the distance
between two consecutive perfect power of e. For instance, when

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2481

|n| = 2048 bits and assuming SHA-256 hash function being used,
we end up having 1720 bits for trailing garbage bytes (i.e., 2048 −
24 (3 prefix bytes) − 304 (for encoding T’ with SHA-256) = 1720).
Given e = 3 and letting ke be the integer representation of ÊMv ,
we can upperbound the the attacker-prepared encoded message by
k3 < 2(2048−15) = 22033. So, the distance between two consecutive
perfect cubes in this range becomes:

k3 − (k − 1)3 = 3k2 − 3k + 1 < 3 · 21356 − 3 · 2678 + 1 < 21358

which is less than the unchecked trailing bytes (i.e., < 21720), and
thus the forgery attempt will always work (the imprecision will
always stay in GARBAGE and be left unchecked). This can be seen
as an improved variant of Bleichenbacher’s original attack [38, 52].

In fact, because of these bugs in node-forge, signature forgery
will succeed even with a slightly larger e . Under the same set of
security parameters but e = 5, we can upperbound the attacker-
prepared encoded message by k5 < 2(2048−15) = 22033, and the
distance between two consecutive perfect 5-th power becomes
k5 − (k − 1)5 < 21630, which is again less than the unchecked
trailing bytes (i.e., < 21720). Similarly, when |n| = 8192 bits and
e = 17, we have 7862 bits of trailing GARBAGE left unchecked if
SHA-256 hash is used. The attacker-prepared encoded message can
then be upperbound by k17 < 2(8192−15) = 28177, and the distance
between two consecutive perfect 17-th power can be bound as
k17 − (k − 1)17 < 27701, which is again less than the unchecked
trailing bytes (i.e., < 27862). This shows that with such bugs in the
implementation, the use of a longer RSA modulus actually further
weakens instead of improves security.

6.1.2 wpa supplicant & hostapd (v2.9). Both wpa supplicant [8]
and hostapd [4] can be configured to use OpenSSL, GnuTLS, or
their own internal TLS implementation (marked as experimental
by the maintainer). A quick inspection shows that wpa supplicant
and hostapd actually share the same internal TLS implementa-
tion, which is unsurprising given the two are maintained by the
same developer. Since we will revisit new versions of OpenSSL and
GnuTLS next (and they have been thoroughly tested in previous
works [33, 52]), here we focus on testing the PKCS#1-v1.5 signature
verification in their internal TLS implementation.

1) Lax length octet checking for DER: Both implementations suffer
from the lack of proper checking of length octet while decoding
ASN.1 structure of EMv with respect to DER [10]. In DER, definite
long form encoding of a length less than 128 bytes are not allowed.
For instance, a length of 9 should be encoded as 0x09, but these
implementations incorrectly allow the definite long form encoding,
such as 0x8109, where the first byte (with the MSB set) shows the
number of subsequent bytes need to be concatenated to obtain the
length value. This mistake not only makes the implementations
overly lenient in accepting incorrect signature values (whose EMv s
contain incorrect encoding of length octets) but also contribute to
the signature vulnerability discussed below. In the benign cases
under the commonly supported hash functions, it is not necessary
for implementations to support the definite long form encoding of
length octets (i.e., there are no content octets with length larger
than 127). This alone does not lead to an immediate attack, however,
attackers canmaximize the size of unchecked bytes when exploiting
other bugs as discussed below.

2) Leniency in checking AlgorithmIdentifier structure (CVE-
2021-30004): Using Morpheus, we found that both wpa supplicant
and hostapd have the classic flaw of not checking the algorithm
parameter component. Once OID (i.e., object identifier) of the
hash function is decoded, the implementations skip the rest of
the AlgorithmIdentifier structure, which contains the param-
eter field for the hash function being used. This is similar to the
bug in strongSwan 5.6.3 reported by a recent work [33], as well
as in Mozilla NSS [31] and GnuTLS [43] many years ago. This can
be exploited for signature forgery, and the resulting unchecked
area can be expanded by the definite long form of length octets
discussed above.

◦ Signature forgery: Given the above vulnerability, these imple-
mentations would accept a malformed ÊMv in the form of

0x00 || 0x01 || PS || 0x00 || A || GARBAGE || B

where PS is 0xFFFFFFFFFFFFFFFF as these implementations
require a minimum of 8 bytes of padding; A is the octet string con-
taining the initial portion of ASN.1 encoded structure (i.e., T) up to
the hash algorithm parameter field; GARBAGE indicates the bytes in
T corresponding to the unchecked hash algorithm parameter field;
and finally, B is the octet string containing the last portion of T rep-
resenting the TLV for hash value (i.e., the digest structure). More
concretely, when |n| = 2048, H = SHA-256, and to-be-forgemes-
sage m’ = "hello world!", then:
A = 0x3081f13081cd0609608648016503040201

B = 0x04207509e5bda0c762d2bac7f90d758b5b2263fa01ccbc542ab5e3df16
3be08e6ca9

The length octets in A have been adjusted to use definite long form
whenever possible (e.g., the lenght of 0x81f1 and 0x81cd for the
DigestInfo and AlgorithmIdentifier structures, respectively)
to maximize the length of GARBAGE.

Since the unchecked area resides in the middle of ÊMv , an at-
tacker can forge a signature Ŝ = (k1 + k2), where k1 and k2 are
two integers chosen such that once Ŝ is processed by the veri-
fier (i.e., when e = 3, verifier obtains ÊMv = Ŝ3 = (k1 + k2)3 =
k31 +3k

2
1k2+3k

2
2k1+k

3
2 after processing Ŝ), the following properties

hold for the malformed encoded message ÊMv :
(1) The most significant bits of k31 should match 0x00 ||
0x01 || PS || 0x00 || A, the octet string right before
the unchecked area;

(2) The least significant bits of k32 should match B, the octet
string right after the unchecked area;

(3) The least significant bits of k31 and the most significant bits
of k32 along with 3k

2
1k2+3k

2
2k1, should stay in the unchecked

area, indicated by GARBAGE.
Success of the forgery attempt hinges on whether there are

enough unchecked bytes to be exploited. Otherwise, the terms of
(k1 + k2)3 expansion would overlap with each other, and as a re-
sult, it becomes difficult for the above properties to hold. However,
according to the above vulnerabilities, the number of unchecked
bytes grows linearly with larger |n| (fixing the same public expo-
nent), which is yet another example of longer RSA modulus further
weakens instead of strengthens security.
How to find k1: Finding k1 is quite similar to finding the attack
signature for the case of trailing garbage bytes, as we have seen
in attacking node-forge. That is, constructing C = 0x00 || 0x01

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2482

|| PS || 0x00 || A || GARBAGE with the length equals to
|n| and then find the cubic root. However, here we cannot hide
the inaccuracy of cubic root of the malformed construct in the least
significant bits of the obtained encoded message. Therefore, we
need to adjust the k1 such that once raised to the power e = 3,
the obtained encoded message contains as many as zero bits in its
least significant bits. For that, we compute t1 = ⌈

3√C⌉ and then
sequentially search for the largest possible r such that ((t1/2r +
1) · 2r)3 yields a number of the form 0x00 || 0x01 || PS ||
0x00 || A || GARBAGE. Once the largest r has been found, then
we can compute k1 = (t1/2r + 1) · 2r .
How to find k2: Finding k2 is similar to finding signature attack for
the case we have forwarding garbage bytes in an encoded message,
as in GARBAGE || B. In this case the the modular exponentiation
can be seen as computed over a much smaller modulus n′, instead
of n. In RSA, finding ϕ(n) often requires factorizing n, which is
believed to be impractical when n is large, now by having a special
n′ it is easy to compute ϕ(n′). The attacker first needs to compute
n′ = 2b where b = |B|, and then compute ϕ(n′) = ϕ(2b) = 2b−1,
because ϕ(pi) = pi (1 − 1/p) when p is prime and i ≥ 1. Notice that
k2 should satisfy ke2 ≡ B (mod n′). Since n′ is a power of 2, we can
guarantee k2 and n′ are coprime by choosing an odd numbered B
with a fitting hash value. By knowing ϕ(n′) and e = 3, attacker can
find a fake private exponent f which acts similar to d . Attacker uses
Extended Euclidean Algorithm to find f such that e f ≡ 1 modϕ(n′)
and use f to compute k2 as k2 = Bf mod n′.

◦ Real-world impact: Because of this flaw, systems (e.g. resource-
constrained embedded devices) that use v2.9 of wpa supplicant
or hostapd and rely on its internal TLS implementation, will be
susceptible to signature (certificate) forgery attacks. This can be
exploited in tandem with a WPA2-Enterprise Evil Twin attack for
stealing user credentials [24], especially when theWPA2-Enterprise
setup is configured to use the system CA store as the trust anchor
for certificate validation.

Despite the experimental nature of the internal TLS implementa-
tion, we found that the signature forgery discussed above can indeed
lead to practical attacks in the real world. We purchased a commod-
ity Wi-Fi router and replaced its factory firmware with OpenWRT,
one of the most popular open-source Linux-based router firmware,
and installed the ca-bundle, wpa-supplicant and hostapd pack-
ages from its package manager (opkg). The OpenWRT ca-bundle
package is based on the same set of trusted CA certificates dis-
tributed and used by Debian Linux, and contains two CA certificates
that have a public key with e = 3, namely the Go Daddy Class 2
Certification Authority and the Starfield Class 2 Certification Author-
ity. In fact, as long as there is one such certificate included in the
trust anchors, a certificate forgery attack exploiting the signature
verification flaw can succeed. We generated an attack certificate
pretending to be issued by Go Daddy (by filling in appropriate
information in the issuer field), and followed the aforementioned
steps to forge a signature that can trick wpa supplicant. Then we
used a Raspberry Pi 4 to act as the Evil Twin and tried to trick the
wpa supplicant running on OpenWRT (configured to establish a
WPA2-Enterprise EAP-TTLSWi-Fi connection automatically, using
the system CA store to validate the certificate of the authentication
server). With the help of the attack certificate, the Evil Twin was

able to pass the certificate validation of wpa supplicant, pretend
to be the legitimate authentication server, and steal user creden-
tials. The same attack also works if the victim supplicant setup is
configured to use PEAP instead of EAP-TTLS.

Similarly, for hostapd, under the WPA2-Enterprise EAP-TLS
mode, users typically perform a certificate-based authentication to
the server during TLS handshake. However, due to the signature
verification flaw, we were able to generate fake certificates that
appear to be issued by a legitimate authority (e.g., Go Daddy), and
then gain access to a EAP-TLS WPA2-Enterprise Wi-Fi network
safeguarded by hostapd on OpenWRT as any legitimate users.

6.1.3 RELIC (git commit 32eb4c25). RELIC [7] is a cryptographic
library developed with the goal of improving efficiency and flexibil-
ity. Therefore, it can be tailored to meet specific security levels and
algorithmic choices. RELIC’s PKCS#1-v1.5 signature verification
uses decoding approach to parse the given signature’s encoded
message, however, as identified by Morpheus, it is susceptible to
signature forgery and buffer overflow attacks.

1) Leniency in checking the prefix bytes (CVE-2020-36315): The
implementation’s signature verification logic is lenient in checking
the prefix bytes of EMv , which includes leading byte, block type
byte, and padding strings. For the first two bytes, although there
are some checks in place to identify the errors, the implementa-
tion mistakenly continues the verification operation (instead of
terminating it) when the errors occur, and as a result, the identified
errors are eventually overwritten. Afterwards, the code attempt to
peel of the padding bytes without checking their values, until the
end-of-padding zero is reached. Because of this, a new variant of
signature forgery attack is possible.

◦ Signature forgery: We can exploit this with a similar strategy
used to forger signatures for wpa supplicant and hostapd. The only
difference is that the unchecked (padding) bytes cannot contain the
value of zero. This affects how we find k2. The trick is that, after
finding k1 and k2 like before, we set some randomly chosen high
bits of k2 to 1, so that the output of k32 mod n might have random
but non-zero padding. Assuming we can sample output values of
the modular exponentiation uniformly at random by this trick, the
success probability is (255256)

x where x is the size of the padding bytes,
which amounts to about 40% chance of success under |n | = 2048
bits and SHA-256 hash. To the best of our knowledge, this is a new
attack variant not discussed by previous work.

2) Buffer overflow caused by missing length checks (CVE-2020-
36315): Another vulnerability identified by Morpheus, is caused
by the lack of necessary checks to ensure that components of EMv
have correct lengths. After peeling off the prefix bytes, the imple-
mentation checksT ’s ASN.1 encoded content up to hash value bytes.
Afterwards, it copies all bytes of the hash value to a pre-allocated
buffer using a computed length based on the size of padding it peeled
off. Because RELIC also does not enforce proper length checks on
the padding, it is possible for an attacker to use a very short padding
in an attack signature to mislead the code into using a very large
computed length, larger than the size of the pre-allocated buffer,
when attempting to copy the hash value, hence inducing a buffer
overflow. Such attack signatures can be generated similar to the sig-
nature forgery discussed for node-forge. As a proof of concept, we
managed to forge signatures that can crash a verifier using RELIC.

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2483

6.1.4 phpseclib v3.0 (relaxed mode). phpseclib [6] is a PHP library
that provides pure-PHP implementations of cryptographic pro-
tocols with active supports for three versions (v1.0, v2.0, v3.0).
phpseclib v3.0 has two modes of operation for PKCS#1-v1.5 signa-
ture verification, known as relaxed and strict modes. The relaxed
mode of phpseclib v3.0 is implemented to support BER encoding
of ASN.1 data value in the encoded message obtained from the sig-
nature value. The differences between DER and BER occur mainly
in length octets: DER does not allow indefinite length form and
forbids the definite long form when the length can be encoded
directly. Interestingly, phpseclib v3.0 (relaxed mode) uses the decod-
ing approach for signature verification, while the other versions all
take the encoding-based path. Unfortunately due to leniency in its
parser, phpseclib v3.0 (relaxed mode) suffer from 2 vulnerabilities
which enable signature forgery, and 2 bugs causing interoperability
issue.

1) Leniency in checking parameter field (CVE-2021-30130) Similar
to the second bug of wpa supplicant and hostapd, phpseclib v3.0 (re-
laxed mode) fails to properly check the parameter field associated
to the hash algorithm in AlgorithmIdentifier structure. Once
it parses the NULL tag (i.e., 0x05), it returns an empty string with-
out actually checking the length is zero and there is no content
octets to consume. In fact, the tag does not even have to be NULL
because any tags will be accepted by the parser. This bug leaves an
unchecked area enabling an attacker to launch signature. Given that
indefinite form for length octet is allowed in BER and supported
by phpseclib v3.0 (relaxed mode), attacker can further maximize
this unchecked area to increase the chance of success. Notice that
the signature forgery attack is similar to that of wpa supplicant
and hostapd, where we have GARBAGE bytes in the middle of the
malformed encoded message.

2) Leniency in decoding hash function OID’s content octets The
AlgorithmIdentifier structure contains a TLV encoding of the
hash function OID used during the sign operation on m. OIDs (object
identifiers) are identifier mechanism standard [9] for naming any
object with a globally unambiguous persistent name, where it has
its own encoding/decoding rules. The implementation, however,
has a logical flaw in decoding a dotted decimal integer whose value
is is greater than or equal to 128. Therefore, an attacker can inject
garbage bytes after a correct hash algorithm OID the signature still
verifies. The injected garbage bytes cannot be arbitrarily chosen,
where every byte has to have its most significant bit set (i.e., its
value should be in this range [0x80, 0xff]). That being said, it is
not practical to launch Bleichenbacher-style low public exponent
RSA signature forgery because the garbage bytes injected in the
middle cannot be freely chosen; however, it has interoperability
issue where an invalid signature is mistakenly accepted.

6.1.5 Incompatibility issues. The PKCS#1-v1.5 specification has
evolved since it was first proposed, and historically there were some
confusions over whether the presence of a NULL parameter field of
AlgorithmIdentifier is optional, sometimes leading to incom-
patibility issues among different implementations. According to the
latest revision of the standard as described in RFC8017, “for the SHA
algorithms, implementations MUST accept AlgorithmIdentifier
values both without parameters and with NULL parameters” . How-
ever, we found that there are significant number of implementations

(33 of them in Table 2) that reject the implicit NULL parameter case.
Although most RSA certificates have the explicit NULL parameter
field, our empirical study on Censys [2] certificates dataset found
that the implicit NULL parameter case still exists on 4% of RSA
certificates, which suggests this issue can indeed damage interoper-
ability. We detail the evolution of the specification in Appendix A.

6.2 Comparison with different approaches

6.2.1 General-purpose fuzzers. We now empirically show the ratio-
nale for designing a new input sampler instead of using the muta-
tion engine of an existing fuzzer. The main reasons that contribute
to the complexity of generating effective test cases for analyzing
PKCS#1-v1.5 signature verifiers are as follows. First, we aim at
covering many implementations (written in different languages,
for different platforms/architectures, and sometimes proprietary),
thus we consider the most generic black-box setting without in-
strumentation. This limits the use of rich source-level feedback
(e.g., coverage metrics) for generating effective test cases. Second,
even if one assumes a 512-bit modulus (which is not recommended
by today’s security standard [48]), a fuzzer with random test case
generation will have to deal with EMv inputs of 512-bit long, ef-
fectively exploring in a space of 2512 test cases. Combining with
the first reason, this substantially reduces the chance of exposing
interesting non-compliance. Third, a PKCS#1-v1.5 encoded message
is highly structured and requires a context-sensitive grammar to
faithfully capture the format. Bit-level mutation strategy is unlikely
to be successful in exposing interesting non-compliances.

Fuzzer selection.We selected AFL [13] and AFL++ [14] to com-
pare against Morpheus. As we consider a purely black-box setting,
our evaluation is thus a comparison between mutation strategies
without source-level feedback. Roughly, most fuzzers differ from
each other in the type of feedback (e.g., code coverage) and how
they use the feedback. We chose AFL because of its generality and
effectiveness in identifying weaknesses in a wide-variety of appli-
cations. On the other hand, as the PKCS#1-v1.5 encoded message is
highly structured one can envision that a representative (context-
free) grammar-based fuzzer like AFL++ may have a better chance
in generating interesting test cases.

Incorporating AFL and AFL++ into Morpheus workflow.

Like many other general-purpose fuzzers, AFL and AFL++ are de-
signed to discover inputs that can cause a crash in the target pro-
gram. We replaced our input sampler with AFL and AFL++ in the
Morpheus architecture (See Figure 1). We have, however, observed
that by just running AFL and AFL++ against those subject imple-
mentations do not lead to any interesting discovery as the semantic
bugs reported by Morpheus do not necessarily cause a crash in the
system. Hence, we tested the bug detector component by modifying
it to generate an artificial crash whenever a deviation is found and
thus provide AFL/AFL++ with some behavioral feedback.

Configuring AFL and AFL++. AFL takes seed inputs and ap-
plies a variety of mutation techniques to generate new test cases.
Seeds used to run AFL (and, AFL++) contain correct PKCS#1-v1.5
signature structures for some given fixed parameters (e.g., hash
algorithm, modulus size), similar to what is presented in Appendix
section B. Although the mutator of AFL is grammar-blind, we take
advantage of the support of user-defined dictionaries to make it

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2484

aware of the basic structure of the test cases in order to maximize
its effectiveness. We created our own dictionary containing mean-
ingful/interesting byte sequences that may occur in PKCS#1-v1.5
signature structure irrespective of the message being signed.

AFL++ is based on AFL and supports custom mutators. We use
the open-source grammar mutator [17] and configured AFL++ to
only use thismutator to evaluate the grammarmutator performance.
We then created a context-free grammar — an approximation to de-
scribe the PKCS#1-v1.5 structure — in order to give it some guidance
on dealing with the input structure.

Results. Our evaluation on AFL and AFL++ adopts suggestions
from Klees et al. [49] and refers to the setups in the latest fuzzers
UNIFUZZ [54] and WINNIE [44]. We launched 5 trials for each
target implementation and ran 24 hours for each trial. We omitted
Apple Security Framework’s Crypto and STM32-crypto for this set
of comparison experiments since they cannot be run natively on
a x86-64 Ubuntu 20.04 machine, where we have the setups of AFL
and AFL++. As can be seen in Table 2, AFL and AFL++ are able
to detect some of the bugs reported by Morpheus, with the help
of our oracle as well as domain knowledge. However, their test
case generations still struggle to generate high quality test cases to
reveal all the bugs discovered by Morpheus, and they also did not
detect any new bugs not caught by Morpheus. It is also interesting
that when AFL++ was configured to only use the grammar mutator,
it did not outperform AFL’s basic mutators in our case study.

6.2.2 A KLEE-based approach in previous work [33]. We first use
Morpheus to revisit the old implementations that were found to
be problematic in [33]. The test results can be found in Table C1 in
Appendix C. We note that all of the flaws that can lead to signature
forgery and buffer overflow as reported by previous work can also
be found by Morpheus. Moreover, we realized that due to how
symbolic execution was being setup in previous work, Morpheus
actually uncovered more findings regarding incompatibility and
minor leniency. First, previous work did not investigate the incom-
patibility issues regarding an implicit NULL algorithm parameter.
More intricately, because of scalability reasons, previous work used
concrete bytes for ASN.1 tags [33] in all its test harnesses, and thus
cannot detect leniency in the parsing of tags (e.g., ignoring the class
and form bits). Similarly, with respect to the 3 test harnesses (TH1,
TH2, TH3) used by previous work, the ASN.1 length variables take
concrete values in TH1 and TH2, and the symbolic length variables
used by TH3 is always 1-byte long [33], and thus KLEE was not
given enough symbolic bytes to explore potential leniency related
to long and indefinite forms of encoding ASN.1 length.

Finally, to give a comprehensive comparison, we also applied
the KLEE toolchain used by Chau et al. [33] on the few applicable
new subjects that we tested with Morpheus. The relevant statistics
can be found in Table C2 in Appendix C. Among the open source
ones covered in Table 2, only IPP Crypto, wpa supplicant, Apache
milagro, and RELICwere written in C. However, IPP Crypto requires
clang version 9 or above (whereas the toolchain uses version 3.4),
thus we exclude it in the comparison. For making wpa supplicant
and RELIC amenable to the approached used in [33], 11 and 8 lines
in the source tree were modified respectively, for injecting the
concolic test buffer. Apache milagro did not require any source tree
modifications due to its API design.

Table 2: Bugs found by Morpheus, AFL, and AFL++

Implementation

name

Source code

language

Bug
1

Morpheus AFL AFL++
2

wpa supplicant v2.9 C

SF#1 ✓ ✓ X

ML#1 ✓ X X

ML#2 ✓ ✓ ✓

ML#3 ✓ X X

ML#4 ✓ ✓ ✓

hostapd v2.9 C

SF#1 ✓ ✓ X

ML#1 ✓ X X

ML#2 ✓ ✓ ✓

ML#3 ✓ X X

ML#4 ✓ ✓ ✓

IPP Crypto v2020 Update 3 C IN ✓ ✓ ✓

SunRsaSign OpenJDK v11.0.10 Java - - - -
Amazon Corretto Crypto
Provider v1.5.0

Java IN ✓ ✓ ✓

Bouncy Castle Provider v1.67 Java - - - -
Rust Crypto RSA v0.3.0 Rust IN ✓ ✓ ✓

pyca/cryptography v2.1.4 Python IN ✓ ✓ ✓

phpseclib v1.0 PHP IN ✓ ✓ ✓

phpseclib v2.0 PHP IN ✓ ✓ ✓

phpseclib v3.0 (relaxed mode) PHP

SF#1 ✓ ✓ X

ML#1 ✓ ✓ ✓

ML#2 ✓ ✓ ✓

ML#3 ✓ X X

phpseclib v3.0 (strict mode) PHP IN ✓ ✓ ✓

CryptX v0.070 Perl ML#1 ✓ ✓ ✓

cryptonite v0.28 Haskell IN ✓ ✓ ✓

PyCryptodome v3.10.1 Python - - - -
buddy-core v1.9.0 Clojure - - - -

jsrsasign v10.1.13 JavaScript
ML#1 ✓ ✓ X

IN ✓ ✓ ✓

node-forge v0.10.0 JavaScript

SF#1 ✓ ✓ ✓

SF#2 ✓ X X

ML#1 ✓ X X

ML#2 ✓ ✓ ✓

Node Crypto v14.16.0 JavaScript IN ✓ ✓ ✓

Node-RSA v1.1.1 JavaScript IN ✓ ✓ ✓

node-jws v4.0.0 TypeScript IN ✓ ✓ ✓

Apple Security Framework’s
Crypto v2021.03.26

Swift IN ✓ N/A N/A

asmCrypto v2.3.2 JavaScript IN ✓ ✓ ✓

jose-jwt v0.9.1 Haskell IN ✓ ✓ ✓

go rsa v1.16.2 Go IN ✓ ✓ ✓

Solidity RSA PKCS1 Verification git
commit b927ddb

Solidity IN ✓ ✓ ✓

Apache milagro v2.0.1 C IN ✓ ✓ ✓

py-pkcs1 v0.9.6 Python IN ✓ ✓ ✓

Crypto++ v8.5 C++ IN ✓ ✓ ✓

RELIC git commit 32eb4c25 C
SF#1 ✓ ✓ X

BO#1 ✓ X X

IN ✓ ✓ ✓

Seed7 git commit 1e4e942 3 Seed7

SF#1 ✓ ✓ X

SF#2 ✓ ✓ X

SF#3 ✓ ✓ ✓

SF#4 ✓ X X

ML#1 ✓ ✓ ✓

ML#2 ✓ ✓ ✓

Microsoft .Net Cryptography v5.0 C# IN ✓ ✓ ✓

GaloisInc RSA v2.4.1 Haskell IN ✓ ✓ ✓

STM32-crypto v3.1.0 Firmware binary IN ✓ N/A N/A
axTLS v2.1.5 C IN ✓ ✓ ✓

MatrixSSL v4.3.0 C - - - -
MbedTLS v2.26.0 C IN ✓ ✓ ✓

LibTomCrypt v1.18.2 C ML#1 ✓ ✓ ✓

strongSwan v5.9.2 C IN ✓ ✓ ✓

Openswan v3.0.0 C IN ✓ ✓ ✓

Erlang’s public key v11.1.7 Erlang IN ✓ ✓ ✓

tsec v0.2.1 Scala IN ✓ ✓ ✓

OpenSSL v1.1.1k C IN ✓ ✓ ✓

OpenSSL v3.0.0-alpha15 C IN ✓ ✓ ✓

GnuTLS v3.6.15 C IN ✓ ✓ ✓

1 SF: Signature Forgery; ML: Minor Leniency; BO: Buffer Overflow; IN: INcompatibility issue
2 Configured to only use the grammar mutator
3 At the time of writing, we are not aware of applications that use its TLS implementation

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2485

In the end, similar to Morpheus, no unwarranted leniency was
found in Apache milagro. For RELIC, the KLEE-based approach
used in [33] also found its leniency in checking the prefix bytes
[SF#1], as well as its acceptance of trailing bytes after the hash
digest. However, because of how it was setup to avoid scalability
issues, only 2 bytes can be moved around [33], and thus KLEE
did not directly uncover the potential buffer overflow [BO#1]. For
wpa supplicant, the KLEE-based approach also found its incor-
rect extended tag decoding of identifier octets [ML#3], leniency in
checking the length octet of DigestInfo [ML#4], and leniency in
checking AlgorithmIdentifier structure [SF#1]. However, this
approach was unable to find the lax length octet checking for DER
[ML#1] and leniency in checking form bit of an identifier octet
[ML#2] due to limitations of its test harnesses as discussed above.

7 RELATEDWORK

PKCS#1-v1.5. Despite its theoretical security guarantees [40],
many implementations of PKCS#1-v1.5 signature scheme exhibit
flaws that can lead to signature forgery, which were identified
through manual inspection and hand-crafted test cases [1, 11, 12, 30,
38, 42, 53]. A recent work proposed an approach based on symbolic
execution [33], but many implementations were not considered
due to limitations of the toolchain, which greatly motivates this
work. Previous work also attempted to implement a secure parser
for the ASN.1 portion of PKCS#1-v1.5 signatures [58], but to the
best of our knowledge it does not directly enforce all the signature
verification requirements stipulated by the specification.

Orthogonal to its signature scheme, the PKCS#1-v1.5 crypto-
graphic standard also includes an encryption scheme, and many
implementations of which were found to be susceptible to a padding
oracle attack also attributed to Daniel Bleichenbacher [26]. This
padding oracle is notoriously difficult to avoid, as the leakage can
manifest via various side channels, including but not limited to
error messages [27, 50] and timing [41, 55, 59].
Finding logical bugs. Fuzzers (such as AFL [13], LibFuzzer [19],
and Honggfuzz [18]) have shown to be effective in finding low-
level memory bugs and runtime errors. Scalable infrastructures
(e.g., OSS-Fuzz [21], ClusterFuzz [15], and FuzzBench [16]) have
been designed to promote their use. Several fuzzers (e.g., AFL++
[14], SPIKE [23], and Peach [22]) support some forms of grammar
representation, mostly based on a context-free grammar, to allow
them to explore deeper in the source code when dealing with struc-
tured inputs. However, whether these techniques are effective in
discovering logical bugs often depends on the problem at hand.
One potential issue is that context-free grammar might not be suf-
ficiently expressive to capture the intricacies of the input format,
possibly generating many test cases that are trivially rejected. An-
other general challenge concerns the lack of an oracle which prior
work alleviates by adopting differential testing [29, 32, 33, 57].

8 DISCUSSION

Formalization. We manually go over the English specification of
the PKCS#1-v1.5 standard and formalized it in Gallina. It is thus
our interpretation of the specification. Unfortunately, there are cur-
rently no approaches to verify that the correctness requirements we
formalized indeed correspond to the natural language description.

Differential testing. A differential testing approach alleviates the
lack of a test oracle by comparing pairs of implementations-under-
test to find behavioral deviations. The implementations are used
as cross-checking oracles. When a deviation is detected, it is not
clear which implementation is noncompliant, requiring manual
intervention to triage the noncompliance. Also, when the com-
pared implementations suffer from the same noncompliance, then
it will get undetected. Both of these weaknesses are subverted by
Morpheus by using a formally proven test oracle.
Limitations.Morpheus’s oracle currently recognizes the object
identifiers of the SHA family hash algorithms. Signatures using
other hash algorithms will thus be wrongly rejected by it. In addi-
tion, the correctness of PKCS#1-v1.5 oracle critically hinges of the
correctness of Coq’s extraction mechanism as well as the OCaml’s
toolchain. The PKCS#1-v1.5 oracle does not perform the crypto-
graphic operations for a signature verification and instead only
focus on the format checking of the PKCS#1-v1.5 standard. Finally,
Morpheus being a testing approach is incomplete, that is, it is not
guaranteed to discover all noncompliances of an implementation.
Manual efforts. Realizing Morpheus required manual efforts in
the following three aspects: (1) formalizing the correctness theorem
by consulting the standard; (2) developing the oracle and proving
its correctness; (3) generate a test harness to test a given implemen-
tation, which sets up the key, signature and message, and invokes
the corresponding signature verification procedure. Among these,
(1) and (2) are one-time efforts whereas (3) has to be carried out
for any new implementations to be tested. In our case, (1) and (2)
required approximately 180 person-hours whereas depending on
the availability of sample code and document, (3) required a couple
of person-hours on average for each implementation-under-test.

9 CONCLUSION

We developed an automated black-box non-compliance checker
dubbed Morpheus that we used to check compliance of 45 various
PKCS#1-v1.5 signature verification implementations developed in
18 different programming languages. Our analysis revealed that 40
implementations are non-compliant and 6 out of them suffer from
Bleichenbacher-style low public exponent RSA signature forgery.
The results suggest that variants of the Bleichenbacher-style low
public exponent RSA signature forgery attack still work even after
its initial discovery more than a decade ago.

Acknowledgments

We thank the reviewers for their insightful comments and sugges-
tions on how to improve this paper. We would also like to thank
the developers for taking the time to investigate and fix the is-
sues found by Morpheus. This work was supported in part by
the departmental startup budget NEW/SYC, GRF matching fund
GRF/20/SYC, and Project Impact Enhancement Fund 3133292C from
The Chinese University of Hong Kong (CUHK), as well as US De-
partment of Defense (DARPA) Grant D19AP00039, and US National
Science Foundation (NSF) grants CNS-2007512 and CNS-2006556.
The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the
policies or endorsements of the funding agencies.

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2486

REFERENCES

[1] [n.d.]. BERserk Attack – Intel Security web Archive. https://web.archive.org/web/
20150112153121/http://www.intelsecurity.com/advanced-threat-research/. Ac-
cessed: Apr 04, 2021.

[2] [n.d.]. Censys.io - Attack Surface Scan - Total Visibility Internet-Wide. https:
//censys.io/certificates. Accessed: Apr 04, 2021.

[3] [n.d.]. Forge – A native implementation of TLS in Javascript and tools to write
crypto-based and network-heavy webapps. https://github.com/digitalbazaar/
forge. Accessed: Apr 04, 2021.

[4] [n.d.]. hostapd – IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS Au-
thenticator. https://w1.fi/hostapd/. Accessed: Apr 04, 2021.

[5] [n.d.]. ipsec_rsasigkey - generate RSA signature key. https://manpages.debian.
org/testing/libreswan/ipsec_rsasigkey.8.en.html. Accessed: Apr 04, 2021.

[6] [n.d.]. phpseclib – PHP Secure Communications Library. https://github.com/
phpseclib/phpseclib. Accessed: Apr 04, 2021.

[7] [n.d.]. relic – Modern cryptographic meta-toolkit with emphasis on efficiency
and flexibility. https://github.com/relic-toolkit/relic. Accessed: Apr 04, 2021.

[8] [n.d.]. wpa_supplicant – Linux WPA/WPA2/IEEE 802.1X Supplicant. https:
//w1.fi/wpa_supplicant/. Accessed: Apr 04, 2021.

[9] [n.d.]. X.660 : Information technology - Procedures for the operation of object
identifier registration authorities: General procedures and top arcs of the inter-
national object identifier tree. https://www.itu.int/rec/T-REC-X.660. Accessed:
Apr 04, 2021.

[10] [n.d.]. X.690 : Information technology - ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER). https://www.itu.int/rec/T-REC-X.690/. Accessed: Apr 04,
2021.

[11] 2006. CVE-2006-4340. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2006-4340. Accessed: Apr 04, 2021.

[12] 2006. CVE-2006-4790. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2006-4790. Accessed: Apr 04, 2021.

[13] 2013. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/. Accessed: Apr 04,
2021.

[14] 2021. AFL++ – The AFL++ fuzzing framework. https://aflplus.plus. Accessed:
Apr 04, 2021.

[15] 2021. ClusterFuzz – Scalable Fuzzing Infrastructure. https://github.com/google/
clusterfuzz. Accessed: Apr 04, 2021.

[16] 2021. FuzzBench – Fuzzer benchmarking as a service. https://github.com/google/
fuzzbench. Accessed: Apr 04, 2021.

[17] 2021. Grammar Mutator – AFL++. https://github.com/AFLplusplus/Grammar-
Mutator. Accessed: Apr 04, 2021.

[18] 2021. Honggfuzz – Security oriented software fuzzer. https://github.com/google/
honggfuzz. Accessed: Apr 04, 2021.

[19] 2021. LibFuzzer – a library for coverage-guided fuzz testing. https://llvm.org/
docs/LibFuzzer.html. Accessed: Apr 04, 2021.

[20] 2021. Morpheus – A PKCS1 signature verification non-compliance checker.
https://github.com/Morpheus-Repo/Morpheus.git. Accessed: May 04, 2021.

[21] 2021. OSS-Fuzz – Continuous Fuzzing for Open Source Software. https://github.
com/google/oss-fuzz. Accessed: Apr 04, 2021.

[22] 2021. Peach – Peach Fuzzer. http://www.peachfuzzer.com/. Accessed: Apr 04,
2021.

[23] 2021. SPIKE – Fuzzer Automation with SPIKE. https://resources.infosecinstitute.
com/topic/fuzzer-automation-with-spike/. Accessed: Apr 04, 2021.

[24] Alberto Bartoli, Eric Medvet, and Filippo Onesti. 2018. Evil twins and WPA2
Enterprise: A coming security disaster? Computers & Security 74 (2018), 1–11.

[25] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. 2015. A messy state of the union: Taming the composite state
machines of TLS. In IEEE Symposium on Security and Privacy.

[26] Daniel Bleichenbacher. 1998. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS #1. In Advances in Cryptology — CRYPTO
’98, Hugo Krawczyk (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–12.

[27] Hanno Böck, Juraj Somorovsky, and Craig Young. 2018. Return Of Bleichen-
bacher’s Oracle Threat (ROBOT). In 27th USENIX Security Symposium (USENIX
Security 18). USENIX Association, Baltimore, MD, 817–849. https://www.usenix.
org/conference/usenixsecurity18/presentation/bock

[28] George E. P Box. 2005. Statistics for experimenters : design, innovation and discovery
(2nd ed. ed.). Wiley-Interscience, Hoboken, N.J.

[29] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly
Shmatikov. 2014. Using frankencerts for automated adversarial testing of certifi-
cate validation in SSL/TLS implementations. In 2014 IEEE Symposium on Security
and Privacy. IEEE, 114–129.

[30] Bugzilla. 2014. RSA PKCS#1 signature verification forgery is possible due to
too-permissive SignatureAlgorithm parameter parsing. https://bugzilla.mozilla.
org/show_bug.cgi?id=1064636. Accessed: Apr 04, 2021.

[31] Bugzilla. 2014 (accessed Feb 08, 2021). RSA PKCS#1 signature verification forgery
is possible due to too-permissive SignatureAlgorithm parameter parsing. https:
//bugzilla.mozilla.org/show_bug.cgi?id=1064636.

[32] Sze Yiu Chau, Omar Chowdhury, Endadul Hoque, Huangyi Ge, Aniket Kate,
Cristina Nita-Rotaru, and Ninghui Li. 2017. SymCerts: Practical Symbolic Ex-
ecution for Exposing Noncompliance in X.509 Certificate Validation Imple-
mentations. In 2017 IEEE Symposium on Security and Privacy (SP). 503–520.
https://doi.org/10.1109/SP.2017.40

[33] Sze Yiu Chau, Moosa Yahyazadeh, Omar Chowdhury, Aniket Kate, and Ninghui
Li. 2019. Analyzing Semantic Correctness with Symbolic Execution: A Case
Study on PKCS# 1 v1. 5 Signature Verification. In NDSS.

[34] The Coq Development Team. 2012. The Coq Reference Manual, version 8.12.
Available electronically at https://coq.inria.fr/distrib/current/refman/.

[35] Siddhartha R. Dalal and Colin L. Mallows. 1998. Factor-Covering Designs for
Testing Software. Technometrics 40, 3 (Aug. 1998), 234âĂŞ243. https://doi.org/
10.2307/1271179

[36] Antoine Delignat-Lavaud, Martín Abadi, Andrew Birrell, Ilya Mironov, Ted Wob-
ber, and Yinglian Xie. 2014. Web PKI: Closing the Gap between Guidelines and
Practices.. In NDSS. Citeseer.

[37] D. Eastlake. 2001. RSA/SHA-1 SIGs and RSA KEYs in the Domain Name System
(DNS). RFC 3110. https://www.rfc-editor.org/rfc/rfc3110.txt

[38] H. Finney. 2006. Bleichenbacher’s RSA signature forgery based on
implementation error. https://mailarchive.ietf.org/arch/msg/openpgp/
5rnE9ZRN1AokBVj3VqblGlP63QE/. Accessed: Apr 04, 2021.

[39] Si Gao, Hua Chen, and Limin Fan. 2013. Padding Oracle Attack on PKCS#1 v1.5:
Can Non-standard Implementation Act as a Shelter?. In Cryptology and Network
Security. Springer International Publishing, Cham, 39–56.

[40] Tibor Jager, Saqib A. Kakvi, and Alexander May. 2018. On the Security of the
PKCS#1 v1.5 Signature Scheme (CCS ’18). Association for Computing Machinery,
New York, NY, USA, 1195âĂŞ1208. https://doi.org/10.1145/3243734.3243798

[41] Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky. 2012. Bleichenbacher’s
Attack Strikes again: Breaking PKCS#1 v1.5 in XML Encryption. In Computer
Security – ESORICS 2012, Sara Foresti, Moti Yung, and Fabio Martinelli (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 752–769.

[42] Simon Josefsson. 2006. [gnutls-dev] Original analysis of signature forgery prob-
lem. https://lists.gnupg.org/pipermail/gnutls-dev/2006-September/001240.html.
Accessed: Apr 04, 2021.

[43] Simon Josefsson. 2006 (accessed Feb 08, 2021). [gnutls-dev] Original analysis of
signature forgery problem. https://lists.gnupg.org/pipermail/gnutls-dev/2006-
September/001240.html.

[44] Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim, Yonghwi Jin, and Taesoo
Kim. [n.d.]. WINNIE: Fuzzing Windows Applications with Harness Synthesis
and Fast Cloning. ([n. d.]).

[45] Burt Kaliski. 1998. PKCS #1: RSA Encryption Version 1.5. RFC 2313. https:
//doi.org/10.17487/RFC2313

[46] Burt Kaliski and Jessica Staddon. 1998. PKCS #1: RSACryptography Specifications
Version 2.0. RFC 2437. https://doi.org/10.17487/RFC2437

[47] Burt Kaliski and Jessica Staddon. 2003. RFC3447: Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1. RFC 3447.
https://doi.org/10.17487/RFC3447

[48] Cameron F. Kerry and Charles Romine. 2013. FIPS PUB 186-4 FEDERAL INFOR-
MATION PROCESSING STANDARDS PUBLICATION Digital Signature Standard
(DSS).

[49] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2123–2138.

[50] Vlastimil Klíma, Ondrej Pokorný, and Tomáš Rosa. 2003. Attacking RSA-Based
Sessions in SSL/TLS. In Cryptographic Hardware and Embedded Systems - CHES
2003, Colin D. Walter, Çetin K. Koç, and Christof Paar (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 426–440.

[51] D. Richard Kuhn and Raghu N. Kacker. 2011. Combinatorial Testing. https:
//tsapps.nist.gov/publication/get_pdf.cfm?pub_id=910001. Accessed: Apr 04,
2021.

[52] Ulrich Kühn, Andrei Pyshkin, Erik Tews, and Ralf-Philipp Weinmann. 2008.
Variants of Bleichenbacher’s Low-Exponent Attack on PKCS#1 RSA Signatures.
In Sicherheit 2008: Sicherheit, Schutz und Zuverlässigkeit. Konferenzband der 4.
Jahrestagung des Fachbereichs Sicherheit der Gesellschaft für Informatik e.V. (GI),
2.-4. April 2008 im Saarbrücker Schloss.

[53] Ulrich Kühn, Andrei Pyshkin, Erik Tews, and Ralf-Philipp Weinmann. 2008.
Variants of Bleichenbacher’s Low-Exponent Attack on PKCS#1 RSA Signatures.
In SICHERHEIT 2008 âĂŞ Sicherheit, Schutz und Zuverlässigkeit. Beiträge der 4.
Jahrestagung des Fachbereichs Sicherheit der Gesellschaft für Informatik e.V. (GI),
Ammar Alkassar and Jörg Siekmann (Eds.). Gesellschaft für Informatik e. V.,
Bonn, 97–109.

[54] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen,
Chenyang Lyu, Chunming Wu, Raheem Beyah, Peng Cheng, et al. 2021. Unifuzz:
A holistic and pragmatic metrics-driven platform for evaluating fuzzers. In 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association.

[55] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebas-
tian Schinzel, and Erik Tews. 2014. Revisiting SSL/TLS Implementations:
New Bleichenbacher Side Channels and Attacks. In 23rd USENIX Security

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2487

https://web.archive.org/web/20150112153121/http://www.intelsecurity.com/advanced-threat-research/
https://web.archive.org/web/20150112153121/http://www.intelsecurity.com/advanced-threat-research/
https://censys.io/certificates
https://censys.io/certificates
https://github.com/digitalbazaar/forge
https://github.com/digitalbazaar/forge
https://w1.fi/hostapd/
https://manpages.debian.org/testing/libreswan/ipsec_rsasigkey.8.en.html
https://manpages.debian.org/testing/libreswan/ipsec_rsasigkey.8.en.html
https://github.com/phpseclib/phpseclib
https://github.com/phpseclib/phpseclib
https://github.com/relic-toolkit/relic
https://w1.fi/wpa_supplicant/
https://w1.fi/wpa_supplicant/
https://www.itu.int/rec/T-REC-X.660
https://www.itu.int/rec/T-REC-X.690/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4340
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4340
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4790
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4790
https://lcamtuf.coredump.cx/afl/
https://aflplus.plus
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/fuzzbench
https://github.com/google/fuzzbench
https://github.com/AFLplusplus/Grammar-Mutator
https://github.com/AFLplusplus/Grammar-Mutator
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/Morpheus-Repo/Morpheus.git
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
http://www.peachfuzzer.com/
https://resources.infosecinstitute.com/topic/fuzzer-automation-with-spike/
https://resources.infosecinstitute.com/topic/fuzzer-automation-with-spike/
https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://bugzilla.mozilla.org/show_bug.cgi?id=1064636
https://bugzilla.mozilla.org/show_bug.cgi?id=1064636
https://bugzilla.mozilla.org/show_bug.cgi?id=1064636
https://bugzilla.mozilla.org/show_bug.cgi?id=1064636
https://doi.org/10.1109/SP.2017.40
https://coq.inria.fr/distrib/current/refman/
https://doi.org/10.2307/1271179
https://doi.org/10.2307/1271179
https://www.rfc-editor.org/rfc/rfc3110.txt
https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE/
https://mailarchive.ietf.org/arch/msg/openpgp/5rnE9ZRN1AokBVj3VqblGlP63QE/
https://doi.org/10.1145/3243734.3243798
https://lists.gnupg.org/pipermail/gnutls-dev/2006-September/001240.html
https://lists.gnupg.org/pipermail/gnutls-dev/2006-September/001240.html
https://lists.gnupg.org/pipermail/gnutls-dev/2006-September/001240.html
https://doi.org/10.17487/RFC2313
https://doi.org/10.17487/RFC2313
https://doi.org/10.17487/RFC2437
https://doi.org/10.17487/RFC3447
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=910001
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=910001

Symposium (USENIX Security 14). USENIX Association, San Diego, CA, 733–
748. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/
presentation/meyer

[56] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas Rusch. 2016. PKCS
#1: RSA Cryptography Specifications Version 2.2. RFC 8017. https://doi.org/10.
17487/RFC8017

[57] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D. Keromytis, and
Suman Jana. 2017. NEZHA: Efficient Domain-Independent Differential Testing.
In 2017 IEEE Symposium on Security and Privacy (SP). 615–632. https://doi.org/
10.1109/SP.2017.27

[58] Tahina Ramananandro, Antoine Delignat-Lavaud, CÃľdric Fournet, Nikhil
Swamy, Tej Chajed, Nadim Kobeissi, and Jonathan Protzenko. 2019. EverParse:
Verified Secure Zero-Copy Parsers for AuthenticatedMessage Formats. InUSENIX
Security. USENIX. https://www.microsoft.com/en-us/research/publication/
everparse/

[59] E. Ronen, R. Gillham, D. Genkin, A. Shamir, D. Wong, and Y. Yarom. 2019. The 9
Lives of Bleichenbacher’s CAT: New Cache ATtacks on TLS Implementations. In
2019 IEEE Symposium on Security and Privacy (SP). 435–452. https://doi.org/10.
1109/SP.2019.00062

[60] Joseph A. Salowey, Sean Turner, and Christopher A. Wood. [n.d.]. TLS 1.3: - One
Year Later. https://www.ietf.org/blog/tls13-adoption/. Accessed: Jan 11, 2020.

[61] George B. Sherwood. 2015. Embedded functions in combinatorial test designs.
In Eighth IEEE International Conference on Software Testing, Verification and
Validation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015. IEEE Computer
Society, 1–10. https://doi.org/10.1109/ICSTW.2015.7107432

[62] N. J. A. Sloane. 1993. Covering arrays and intersecting codes. Journal of Com-
binatorial Designs 1, 1 (1993), 51–63. https://doi.org/10.1002/jcd.3180010106
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcd.3180010106

[63] Nigel P. Smart. 2015. Cryptography Made Simple (1st ed.). Springer Publishing
Company, Incorporated.

[64] Serge Vaudenay. 2010. A Classical Introduction to Cryptography: Applications for
Communications Security (1st ed.). Springer Publishing Company, Incorporated.

A EVOLUTION OF PKCS#1-V1.5 STANDARD

RFC8017 [56] describes the latest version of RSA Cryptography
Specifications in which it provides recommendations for the imple-
mentation of public-key cryptography based on the RSA algorithm.
There are two types of schemes described in the PKCS#1 specifica-
tions: encryption and signature with appendix. These schemes are
to combine cryptographic primitives and other techniques in order
to achieve a particular security goal. The signature type consists
of two schemes, called RSASSA-PKCS1-v1_5 and RSASSA-PSS ,
where the former has been maintained from the earliest version
(v1.5) and the latter is introduced in the interest of increased ro-
bustness. According to RFC8017, RSASSA-PKCS1-v1_5 (dubbed as
PKCS#1-v1.5) is still appropriate for new applications because no
attack has been found to the specifications. In fact, the PKCS#1-
v1.5 signature scheme is the most widely used digital signature in
practice [40]. The popularity is because that it appears to be simple,
and thus (seemingly) easy to implement, while featuring signifi-
cantly faster operations than its peers, such as DSA or ECDSA [40].
Another reason that boosts its popularity is its widely adoption in
some protocols which are still ubiquitous on the Internet [60].

PKCS#1-v1.5 signature scheme was born in RFC2313 [45] where
it specifies the primitives for RSA signature generation and sig-
nature signature verification. The encoded message format was
introduced in this RFC, while for the ASN.1 data portion, it was
suggested to use BER (Basic Encoding Rules [10]). The hash func-
tions recommended were MD2, MD4, and MD5 and for verification
operation, it was suggested to use decode approach to parse BER
in order to extract hash function ID and hash value.

In the subsequent RFC2437 [46] (which obsoletes RFC2313), a
more organized and detailed specifications of the signature genera-
tion and verification primitives are given for PKCS#1-v1.5 signature
scheme where it updates the ASN.1 data portion of the encoded

message to follow DER. This RFC also adds SHA-1 to the recom-
mended list of hash functions and removes MD4 from it (flagged as
being vulnerable). As specified in this RFC, the parameter field for
associated to the hash function in an AlgorithmIdentifier shall
have type NULL.

The RFC3447 [47] (which obsoletes RFC2437) introduces a new
signature scheme, called RSASSA-PSS, although no attack has found
in PKCS#1-v1.5, and emphasizes it is still appropriate for the new
applications to use PKCS#1-v1.5 signature scheme. This RFC also
suggests a cautious implementor to support BER encoding as long
as the overall structure is correct. It then describes the encoding-
based and decoding-based approaches are two alternatives for the
verification, while not promoting one over the other. This RFC also
adds three more hash functions, SHA-256, SHA-384, and SHA-512
to the previous recommended list and suggest the parameter field
associated to SHA hash function family “should be omitted, but if
present, shall have a value of type NULL”.

Finally, in RFC8017 [56] (the latest version to the date), although
keeping the most of specifications from its predecessor, it adds sup-
port for three more hash functions: SHA-224, SHA-512/224, and
SHA-512/256 and recommends SHA-2XX family onwards. RFC8017
also emphasizes that “for the SHA algorithms, implementations
MUST accept AlgorithmIdentifier values both without parame-
ters and with NULL parameters”. However, it mentions in formatting
the DigestInfo to generate the encoded message (during signa-
ture generation operation), the parameters field associated with SHA
hash function family shall have a value of type NULL to maintain
compatibility with existing implementations.

B PARAMETER SETTINGS IN MORPHEUS

Concrete values used in the evaluation. Following from the
reference notation introduced in Table 1 and the input parameters
discussed in Section 5.4, we have used the following concrete values
in our evaluation of Morpheus.
min, max = 1, 2

C’s labels = [’leading_byte’, ’block_type’, ’padding_bytes’, ’pa
dding_end’, ’asb@type’, ’asb@length’, ’hash_algo@type’, ’has
h_algo@length’, ’hash_id@type’, ’hash_id@length’, ’hash_id@v
alue’, ’param@type’, ’param@length’, ’param@value’,’hash_val
ue@type’, ’hash_value@length’, ’hash_value@value’]

S’s labels = C’s labels

n = 0xE932AC92252F585B3A80A4DD76A897C8B7652952FE788F6EC8DD640587
A1EE5647670A8AD4C2BE0F9FA6E49C605ADF77B5174230AF7BD50E5D6D6D
6D28CCF0A886A514CC72E51D209CC772A52EF419F6A953F3135929588EBE
9B351FCA61CED78F346FE00DBB6306E5C2A4C6DFC3779AF85AB417371CF3
4D8387B9B30AE46D7A5FF5A655B8D8455F1B94AE736989D60A6F2FD5CADB
FFBD504C5A756A2E6BB5CECC13BCA7503F6DF8B52ACE5C410997E98809DB
4DC30D943DE4E812A47553DCE54844A78E36401D13F77DC650619FED88D8
B3926E3D8E319C80C744779AC5D6ABE252896950917476ECE5E8FC27D5F0
53D6018D91B502C4787558A002B9283DA7

|n|= 256 bytes

d = 0x009b771db6c374e59227006de8f9c5ba85cf98c63754505f9f30939803
afc1498eda44b1b1e32c7eb51519edbd9591ea4fce0f8175ca528e09939e
48f37088a07059c36332f74368c06884f718c9f8114f1b8d4cb790c63b09
d46778bfdc41348fb4cd9feab3d24204992c6dd9ea824fbca591cd64cf68
a233ad0526775c9848fafa31528177e1f8df9181a8b945081106fd58bd3d
73799b229575c4f3b29101a03ee1f05472b3615784d9244ce0ed639c77e8
e212ab52abddf4a928224b6b6f74b7114786dd6071bd9113d7870c6b52c0
bc8b9c102cfe321dac357e030ed6c580040ca41c13d6b4967811807ef2a2
25983ea9f88d67faa42620f42a4f5bdbe03b

e = 3

H = SHA-256 (OID = 0x608648016503040201)

m = "hello world!"

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2488

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://doi.org/10.17487/RFC8017
https://doi.org/10.17487/RFC8017
https://doi.org/10.1109/SP.2017.27
https://doi.org/10.1109/SP.2017.27
https://www.microsoft.com/en-us/research/publication/everparse/
https://www.microsoft.com/en-us/research/publication/everparse/
https://doi.org/10.1109/SP.2019.00062
https://doi.org/10.1109/SP.2019.00062
https://www.ietf.org/blog/tls13-adoption/
https://doi.org/10.1109/ICSTW.2015.7107432
https://doi.org/10.1002/jcd.3180010106
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcd.3180010106

C COMPARING MORPHEUS WITH

PREVIOUS WORK [33]

The results of comparing Morpheus with respect to the prior by
Chau et al. [33] can be found in Table C1 and Table C2.

Table C1: Comparing Morpheus and previous work [33] on

previously tested subjects

Implementation

name

Source code

language

Bug
1 Chau et al.

[33]

Morpheus

axTLS v2.1.3
C

SF#1: Accepting trailing bytes ✓ ✓

SF#2: Ignoring prefix bytes ✓ ✓

SF#3: Ignoring ASN.1 metadata ✓ ✓

BO#1: Trusting declared lengths ✓ ✓

ML#1: Accepting definite long
form encoding of length for
both digestAlgorithm and digest

X ✓

libtomcrypt v1.16 C

SF#1: Accepting trailing bytes ✓ ✓

SF#2: Accepting less than 8
bytes of padding

✓ ✓

ML#1: Improper checking of
digestAlgorithm length

✓ ✓

ML#2: Ignoring form bit of type
octet for digest and
digestAlgorithm’s identifier

X ✓

IN X ✓

GnuTLS v1.4.22 C

SF#1: Ignoring digestAlgorithm’s
identifier value octets

✓ ✓

SF#2: Ignoring digestAlgorithm’s
parameter value octets

✓ ✓

SF#3: Ignoring the padding string ✓ ✓

ML#1: Ignoring digestAlgorithm’s
parameter type octet

X ✓

ML#2: Accepting definite long form
encoding of length for DigestInfo

X ✓

MatrixSSL v3.9.1
(Certificate)

C
ML: Lax ASN.1 length checks ✓ ✓

IN X ✓

MatrixSSL v3.9.1
(CRL)

C
ML#1: Lax ASN.1 length checks ✓ ✓

ML#2: Mishandling Algorithm OID ✓ ✓

IN X ✓

mbedTLS v2.4.2 C
ML: Lax algorithm parameter
length check

✓ ✓

IN X ✓

openssl v0.9.7h2 C
SF: Accepting trailing bytes ✓ ✓

ML: Accepting some absurd
length values

✓ ✓

Openswan v2.6.50 C
SF: Ignoring padding bytes ✓ ✓

IN X ✓

strongSwan v5.6.3 C

SF#1: Not checking algorithm
parameter

✓ ✓

SF#2 Accepting trailing bytes
after OID

✓ ✓

SF#3: Accepting less than 8 bytes
of padding

✓ ✓

ML: Lax ASN.1 length checks ✓ ✓
1 SF: Signature Forgery; ML: Minor Leniency; BO: Buffer Overflow; IN: INcompatibility issue
2 Libraries used for feasibility study in [33]

Table C2: Statistics of applying theKLEE toolchain frompre-

vious work [33] on new test subjects

Implementation

(version)

Test

Harness

Lines

Changed

Execution

Time

Total Path

(Accepting)

Apache milagro v2.0.1
TH1

0
<9 mins 60582 (1)

TH2 <1 min 42 (1)
TH3 <1 min 6 (1)

RELIC git commit 32eb4c25
TH1

8
<26 mins 20595 (15)

TH2 <3 mins 36 (3)
TH3 <1 min 2 (1)

wpa supplicant v2.9
TH1

11
<2 mins 2685 (3)

TH2 <1 min 1224 (21)
TH3 <1 min 161 (2)

D DETAILED FINDINGS

Here we present detailed descriptions and root cause analysis for
some of our findings, and provide sample encoded messages EM
and signatures S demonstrating the unwarranted leniency. Each
signature S given here was generated and can be verified using the
modulus and exponents given in Appendix B. More details can be
found in [20].

D.1 node-forge (v0.10.0)

D.1.1 Accepting less than 8 bytes of padding [ML#1]. In
the line 1575 in decodePkcs1 v1 5() function from
node forge/lib/rsa.js, the implementation does not
check the padding bytes minimum required length of 8 or more,
instead, it looks for the first byte that is not 0xFF and then counts
the number of padding bytes (i.e., using padNum variable). It then
checks that the end of padding, zero variable, is actually 0x00 and
the number of padding bytes is (k − 3−T’s length), where k is the
length of public modulus n (i.e., |n|). However, the padding bytes
length check performed in code (line 15) can be bypassed because
it does not validate whether the top ASN.1 encoded structure (i.e.,
T) is malformed or not, and mistakenly trusts whatever it contains.
As we show in other vulnerabilities, this bug enables attacker to
steal all bytes from padding bytes and use them to expand an
unchecked portion size of the encoded message structure (because
of some existing leniencies) to launch Bleichenbacher-style low
public exponent RSA signature forgery.
1 } else if(bt === 0x01) {
2 // find the first byte that isn't 0xFF, should be

after all padding
3 padNum = 0;
4 while(eb.length() > 1) {
5 if(eb.getByte() !== 0xFF) {
6 --eb.read;
7 break;
8 }
9 ++padNum;
10 }
11 }
12 ...
13 // zero must be 0x00 and padNum must be (k - 3 -

message length)
14 var zero = eb.getByte();
15 if(zero !== 0x00 || padNum !== (k - 3 - eb.length())

) {
16 throw new Error('Encryption block is invalid.');
17 }
18 return eb.getBytes();

D.1.2 Ignoring digestAlgorithm structure (CVE-2021-30247) [SF#1].
The DigestInfo is the top ASN.1 encoded sequence structure that
contains digestalgorithm and digest octet strings, where the
former encodes the hash ID information, being used in the sign-
ing process as well as the optional parameter field associated to
that hash algorithm (represented by NULL parameter), and lat-
ter encodes octet string TLV containing the actual hash value
of the message being signed. The implementation in node-forge,
however, is lenient in checking the digestAlgorithm structure.
Once DigestInfo is being decoded, the implementation, does not
check the necessary elements to be present in its first child (i.e.,
digestalgorithm) and just retrieves the hash value from its sec-
ond child (i.e., digest) to compare it against the computed hash

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2489

value. Hence, it is possible to build arbitrary TLV and use that in-
stead of the digestAlgorithm as long as the TLV is well-formed.

Now by taking a closer look at line 11 in verify() function
snippet below taken from node forge/lib/rsa.js, we can spot
that the implementation only checks that the hash value from the
decoded top ASN.1 structure is equal to the given digest. How-
ever, it mistakenly ignores checking the other elements in the
digestAlgorithm structure, decoded into obj.value[0]. These
missing checks are to make sure the hash function used to com-
pute digest argument is the same as the hash ID encoded in
digestAlgorithm. Also, the parameter field associated to the hash
function encodes NULL TLV. Such checks are necessary to avoid
attacker from using these areas to launch Bleichenbacher-style low
public exponent RSA signature forgery.
1 key.verify = function(digest, signature , scheme) {
2 ...
3 if(scheme === 'RSASSA-PKCS1-V1_5') {
4 scheme = {
5 verify: function(digest, d) {
6 // remove padding
7 d = _decodePkcs1_v1_5(d, key, true);
8 // d is ASN.1 BER-encoded DigestInfo
9 var obj = asn1.fromDer(d);
10 // compare the given digest to the decrypted

one
11 return digest === obj.value[1].value;
12 }
13 };
14 ...
15 // do rsa decryption w/o any decoding , then verify

-- which does decoding
16 var d = pki.rsa.decrypt(signature , key, true,

false);
17 return scheme.verify(digest, d, key.n.bitLength())

;
18 };

In order to reproduce triggering this bug, the below concrete val-
ues, found by Morpheus, can be used given the parameter settings
provided in section B.

Example: 91 garbage bytes injected as the value of a TLV re-
placed digestAlgorithm structure.
EM = 0x0001ff

ff
ff
ff
ffffffffffffff00307f065b888888888888888888888888888888888888
88
88
8888888888888888888888888804207509e5bda0c762d2bac7f90d758b5b
2263fa01ccbc542ab5e3df163be08e6ca9

S = 0xe7410e05bdc38d1c72fab784be41df3d3de2ae83894d9ec86cb5fe343d
5dc7d45df2a36fc60363faf32f0d37ab457648af40a48a6c53ae7af0575e
92cb1ffc236d55e1325af8c71b3ac313f2630fb498b8e1546093aca1ed56
026a96cb525d991159a2d6ccbfd5ef63ae718f8ace2469e357ccf3f6a048
bbf9760f5fb36b9dd38fb330eab504f05078b83f5d8bd95dce8fccc6b46b
abd56f678300f2b39083e53e04e79f503358a6222f8dd66b561fea3a51ec
f3be16c9e2ea6ba8aaed9fbe6ba510ff752e4529385f759d4d6120b15f65
534248ed5bbb1307a7d0a9838329697f5fbae91f48e478dcbb77190f0d17
3b6cb8b1299cf4202570d25d11a7862b47

D.1.3 Accepting trailing bytes (CVE-2021-30249) [SF#2]. This le-
niency stems from the mistake in the implementation where af-
ter reading the length of DigestInfo and decoding its nested
TLV structure with respect to that length, the code does not
check that there should not be any trailing bytes left while all

content octets of the DigestInfo have been decoded. As can
be seen in line 1 of fromDer() function snippet taken from
node forge/lib/asn1.js, once length octet for the top ASN.1
structure is being decoded, it is being used in a subsequent while
loop to decode the nested ASN.1 structure. When the length value
reaches 0, the implementation finishes the decoding of ASN.1 struc-
ture and returns it to the callee, fromDer() function, which in turn
gives it to verify() function. However, in none of these steps,
the implementation does not check that there is no garbage bytes
trailing the ASN.1 structure, and thus will be ignored during the
process.
1 var length = _getValueLength(bytes, remaining);
2 ...
3 var constructed = ((b1 & 0x20) === 0x20);
4 if(constructed) {
5 // parse child asn1 objects from the value
6 value = [];
7 if(length === undefined) {
8 ...
9 } else {
10 // parsing asn1 object of definite length
11 while(length > 0) {
12 start = bytes.length();
13 value.push(_fromDer(bytes, length, depth + 1,

options));
14 remaining -= start - bytes.length();
15 length -= start - bytes.length();
16 }
17 }
18 }
19 ...
20 // create and return asn1 object
21 return asn1.create(tagClass , type, constructed ,

value, asn1Options);

In order to reproduce triggering this bug, the below concrete val-
ues, found by Morpheus, can be used given the parameter settings
provided in section B.

Example: 215 garbage bytes added as trailing garbage bytes by
exploiting another vulnerability which ignores digestAlgorithm
structure to expand the size of unchecked trailing garbage bytes.
EM = 0x0001003024010004207509e5bda0c762d2bac7f90d758b5b2263fa01cc

bc542ab5e3df163be08e6ca9888888888888888888888888888888888888
88
88
88
88
88
88
8888888888888888888888888888888888

S = 0xa7c5812d7fc0eef766a481aac18c8c48483daf9b5ffb6614bd98ebe4ec
b746dd493cf5dd2cbe16ecaa0b52109b744930eda49316605fc823fd57a6
8b5b2c62e8c1b158b26e1547a2e33cdd79427d7c513f07d02261ffe43db1
97d8cddca2b5b43c1df85aaed6e91aadd44a46bff7f5c70f1acc1a193917
e3908444632f30e69cfe95d8036d3b6ad318eefd3952804f16613c969e6d
13604bb4e723dfad24c42c8d9b5b16a9f5a4b40dcf17b167d319017740f9
cc0836436c14d51c3d8a697f1fa2b65196deb5c21b1559c7dea7f598007f
a7320909825009f8bf376491c298d8155a382e967042db952e995d14b2f9
61e1b22f911d1b77895def1c7ef229c87e

D.1.4 Leniency in checking type octet [ML#2]. This issue happens
for the lack of necessary checks for each type octet in T. Although
the implementation decodes the type information,they are not ac-
tually being checked to match with the expected types in the TLV
structures within T. This minor leniency does not lead to any sig-
nature forgery; however, mistakenly accepting an invalid signature
can create interoperability issue.

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2490

Example: Incorrect value (i.e., 0x0c) used for
digestAlgorithm’s type octet instead of the correct value
of 0x30:
EM = 0x0001ff

ff
ff
ff
ff
ff
ff0030310c0d
0609608648016503040201050004207509e5bda0c762d2bac7f90d758b5b
2263fa01ccbc542ab5e3df163be08e6ca9

S = 0xd8298a199e1b6ac18f3c0067a004bd9ff7af87be6ad857d73cc3d24ef0
6195b82aaddb0194f8e61fc31453b9163062255e8baf9c480200d0991a5f
764f63d5f6afd283b9cd6afe54f0b7f738707b4eb6b8807539bb627e74db
87a50413ab18e504e37975aad1edc612bc8ecad53b81ea249deb5a2acc27
e6419c61ab9acec6608f5ae6a2985ba0b6f42d831bc6cce4b044864154b9
35cf179967d129e0ad8eda9bfbb638121c3ff13c64d439632e62250d4be9
28a3deb112ef76a025c5d918051e601878eac0049fc9d82be9ae3475deb7
ca515c830c20b91b7bedf2184fef66aea0bde62ccd1659afbfd1342322b0
95309451b1a87e007e640e368fb68a13c9

D.2 wpa supplicant & hostapd (v2.9)

D.2.1 Lax length octet checking for DER [ML#1]. In ITU-T X.690
standard [10], three ways for encoding length are introduced: def-
inite short form; definite long form; and indefinite form. Definite
short form uses one octet for the length value in the range [0, 127].
Definite long form uses an initial octet followed by one or more
subsequent octets. The initial octet shall be encoded as 8th bit (MSB)
is 1 while bits 7 to 1 shall encode the number of subsequent octets
in the length octets, as an unsigned binary integer with bit 7 as
the most significant bit. Bits 8 to 1 of the first subsequent octet,
followed by bits 8 to 1 of the second subsequent octet, followed
in turn by bits 8 to 1 of each further octet up to and including the
last subsequent octet, shall be the encoding of an unsigned binary
integer equal to the number of octets in the contents octets, with
bit 8 of the first subsequent octet as the most significant bit. For the
indefinite form, the length octets indicate that the contents octets
are terminated by end-of-contents octets, and shall consist of a
single octet. However, as in section 10.1 of DER encoding rule [10]
mandates:

“the definite form of length encoding shall be used,
encoded in the minimum number of octets.”

That is, if a length value is less than or equal 127 bytes, it must
be of definite short form, while definite long form is only allowed
for 128 bytes or larger. That being said, the two implementations
mistakenly validate signature values whose ASN.1 structure does
not follow DER for encoding the length octets. For example, for
a length of 9 bytes, instead of using only definite short form to
encode it within one byte as 0x09, these implementations also
allow it to be encoded as 0x83000009, where 0x83 is the initial byte
indicating that the length is encoded in the three subsequent octets
and 0x000009 shows those three subsequent octets representing
the length value of 9 bytes.

Root causing the issue, takes us to line 1 of below snippet
from asn1 get next() function in asn1.c file, where it checks
whether or not the length octet uses definite long form. If so, it
reads the whole length octets in a loop but it does not check the
length encoded in definite long form to be 128 bytes or greater.
1 if (tmp & 0x80) {
2 if (tmp == 0xff) {

3 wpa_printf(MSG_DEBUG , "ASN.1: Reserved length
"

4 "value 0xff used");
5 return -1;
6 }
7 tmp &= 0x7f; /* number of subsequent octets */
8 hdr->length = 0;
9 if (tmp > 4) {
10 wpa_printf(MSG_DEBUG , "ASN.1: Too long length

field");
11 return -1;
12 }
13 while (tmp--) {
14 if (pos >= end) {
15 wpa_printf(MSG_DEBUG , "ASN.1: Length "
16 "underflow");
17 return -1;
18 }
19 hdr->length = (hdr->length << 8) | *pos++;
20 }
21 } else {
22 /* Short form - length 0..127 in one octet */
23 hdr->length = tmp;
24 }

This bug alone can cause an interoperability issue where an in-
valid signature value can be mistakenly accepted as valid. However,
allowing definite long form, even for its correct length values, will
enable attacker to expand the unchecked area, if any, especially
when in none of the supported hash functions we do not have any
content octets in T whose length is greater than 127 bytes.

In order to reproduce triggering this bug, the below concrete val-
ues, found by Morpheus, can be used given the parameter settings
provided in section B.

Example: Incorrect encoding of the length octet of OID in
AlgorithmIdentifier as definite long form with 4 bytes
(0x83000009):
EM = 0x0001ff

ff
ff
ff
ff
ff
ff0030343010068300
0009608648016503040201050004207509e5bda0c762d2bac7f90d758b5b
2263fa01ccbc542ab5e3df163be08e6ca9

S = 0x80e586e59f6294c9b177a0cf256abf7b91916baa08b3d833b80b60bf0c
85fb3c7d8bcc98eeaf94277e1cd8a1802c706554115b5342f7d96f6cc753
69616a378b78708e40b1e9582213ee10cf2893e197f89256e88dc00bf6cf
17513cdd296b41b5aeb60e5fc609614cee18bd751c6e22d668962395e112
d1938501d62dd5e78ddad458d55ddcf7a9cbd8dd8792eedaed27172bcb95
b817f360103b879f01be63572a9b03b9912759b1e503e4ed96e285b13b5e
8aa00898c1ee7c58915673ea7dc566243b376c14711773f8bd955e5300df
e8528d2a8d71063579a5813491c9be3058a317b496364021169df10a1486
16862f58ff10401efa1300dbbc114704f7

D.2.2 Leniency in checking AlgorithmIdentifier structure
(CVE-2021-30004) [SF#1]. The logics in these implementations
follow these steps. After modular exponentiation to the power
e, and having EMv at hand, it starts reading the TLVs in T.
While reading TLVs from top to bottom, once it reaches to
AlgorithmIdentifier and reading off hash function’s OID,
it skips what follows (see line 11 from the below snippet of
x509 check signature() function in x509v3.c file) — the ex-
plicit NULL hash algorithm parameter TLV — and then starts check-
ing the necessary steps before reading/matching the hash value
portion. So, the root cause is that not sufficient check is taken and
the explicit NULL parameter section of EMv is being skipped mis-
takenly, assuming that it is not important to check. This leniency

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2491

in checking the explicit NULL parameter TLV enables an attacker
to exploit this unchecked area to launch Bleichenbacher-style low
public exponent RSA signature forgery.
1 if (x509_sha256_oid(&oid)) {
2 if (signature ->oid.oid[6] !=
3 11 /* sha2561WithRSAEncryption */) {
4 wpa_printf(MSG_DEBUG , "X509: digestAlgorithm

SHA256 "
5 "does not match with certificate "
6 "signatureAlgorithm (%lu)",
7 signature ->oid.oid[6]);
8 os_free(data);
9 return -1;
10 }
11 goto skip_digest_oid;
12 }

Reproducing this bug can be done using the below concrete
values, found by Morpheus, given the parameter settings provided
in section B.

Example: 194 garbage bytes (0x88s) are injected in the explicit
NULL parameter TLV of AlgorithmIdentifier structure:
EM = 0x0001ffffffffffffffff003081f13081cd060960864801650304020188

88
88
88
88
88
88
8888888888888888888888888804207509e5bda0c762d2bac7f90d758b5b
2263fa01ccbc542ab5e3df163be08e6ca9

S = 0x565e9302375fa303761eaf92359597b06f8781e31e1fc2b86ec273e211
dab37c3afe2fd7c9d8543d2b45e8a98a38f3bc9536165d94a133b3afba58
c934e85afb99e46d0216a61c72f1323d5cbe833be8b750e2b879d0217c4d
b269771fdf9bf865907f3101cd5aa227fd824e35ecc2e3ec90e64633abc2
cf039d7e13f87cd1f2e06ffb78e28c25482f23983a30d2ae02513fc0c8bb
1905f09bb593df412b810a0f807cd7d9fa25b8323fe3537c39d21dc76a3c
cf22428243d3c44f0cef005fe6e26f01f3a2f546c11c0deb48f8e6a6954a
ea8d68336fa8378458f2e4c84217a6419be0f7423edfcf9ac2bb3d6e6854
872e01057faed6a89932fc6c0a76f07c31

D.2.3 Leniency in checking form bit of an identifier octet [ML#2].
An identifier octet in DER encoding [10] of a data value consists
of three components: Class (two most significant bits); Form (6th
bit, indexing from 1); and Tag (five least significant bits). The Class
component is there to indicate the class of a Tag, whether it is a
standard type or application specific type. For instance, 00 for Class
bits shows the tag is universal type. The Form component indicates
if the tag does include sub-type, and thus represents a constructed
type (if set), or it is just a primitive type without any sub-type (if not
set). Finally, Tag represents the actual type of the data value in DER
encoding. For example, the tag for a sequence type is b’10000’;
including Form bit to that makes it b’110000’ because sequence
tag is constructed not primitive; and given that the sequence type
has universal tag class we end up having b’00110000’ (0x30 in
hex) as the final encoded value for this identifier octet. In both
implementations, the Form bit, however, is not being checked and
thus it accepts two versions for an identifier octet (i.e., with and
without Form bit being set). That being said, an identifier octet like
sequence can be represented as both b’00110000’ (i.e., 0x30) and
b’00010000’ (i.e., 0x10). This issue affects sequence type used in
the topDER encodedASN.1 structure (i.e., DigestInfo); sequence
type in AlgorithmIdentifier structure; object identifier
type of hash ID encoding structure; and octet string type of
hash value TLV structure.

Example: Incorrect encoding of sequence type (0x10 instead
of the correct encoding 0x30) used in the DigestInfo structure is
accepted as a valid signature by these implementations.
EM = 0x0001ff

ff
ff
ff
ff
ff
ff001031300d
0609608648016503040201050004207509e5bda0c762d2bac7f90d758b5b
2263fa01ccbc542ab5e3df163be08e6ca9

S = 0xbd1f63e0846661cbc98dd389ea2d7fedc3d74f133a7741f2cde00d71e3
75e89155522f7c3ef1035464e0082ddd5df3244ce0b59f248624b942bb5a
4032262ca9ef96e6c2e81cca72716640ae692f71db26a7736ffa0986217e
688a42580d85aa90a3eb318bf53c7ade07379662414eccb9cbd985779cc0
da6e1f495bb5e899fa2276974b5e5c8fee3615f1cefeb2911e3a6876849e
1b224cec26d09112f9c54f0c6daf9f8b070acd53f128d0fbd79a7a81d19a
3d6e09464e1b3da2aaec410f8e883b45cd003c74515144f9b8dffd0ecfa2
146342578f1e1d5bba9f47ce8f3e57372420a1f1bb458246a4cbd756f8bd
d5d86f7294031f178d3844e7f997b40993

D.2.4 Incorrect extended tag decoding of identifier octets [ML#3].
According to the section 8.1.2.4 of ITU-T X.690 [10] standard speci-
fying ASN.1 encoding format, for

“tags with a number greater than or equal to 31, the
identifier shall comprise a leading octet followed by
one or more subsequent octets.”

This allows tag to be extended to support various types with higher
tag numbers. For that, we have a sequence of bytes starting from
leading byte, continuing by subsequent octets, as needed, followed
by the last octet. These bytes need to conform the encoding rules
prescribed by ITU-T X.690 standard but some important ones are
as follows. The first 5 least significant bits (tag component) of the
leading byte must be all 1s (0x1f). Then each subsequent octets
(except the last octet) must have the most significant bit set to 1
while the last octet’s MSB must be 0. Now once these bytes are
read, the extended tag is computed by concatenating all subsequent
octets (including the last octet) such that all MSBs (for each byte)
are eliminated. The issue with these implementations is that even
though it deals with a primitive type, like object identifier
type (0x06), it allows one to have an extended tag version of that as
well (e.g., 0x1f06) which is against the standard that prescribes the
extended tags which emphasizes “for tags with a number greater
than or equal to 31”. Besides, even though the standard, in the sec-
tion 8.1.2.4.2.c, prohibits that “bits 7 to 1 of the first subsequent octet
shall not all be zero”, these implementations are non-compliant.
Therefore, one can create arbitrary large extended tag format. Go-
ing back to the object identifier type example, we can have
0x1f808080...8006 and still be recognized as a valid identifier
octet for the object identifier type.

Although this bug does not lead to any signature forgery, it can
cause interoperability issue by accepting some invalid signatures.

Example: Incorrect encoding of object identifier type’s
identifier octet as the extended tag with two bytes (0x1f06):
EM = 0x0001ff

ff
ff
ff
ff
ff
ff003031300d
1f06096086480165030402010504207509e5bda0c762d2bac7f90d758b5b
2263fa01ccbc542ab5e3df163be08e6ca9

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2492

S = 0xdf0ddee8731d914b99320cda04c2c84c637a3fb8c5b4155af69ba58b81
c352c4ae4e88093265b8f0d83f4597e5fa0e07ec2637a276101f9f40275d
70efb792132dd66dca80a2667ed9e9b3f1781236fe1022d19c81c3a41e0c
0e3b222a4c429bbf35b60a68b9d7fc121451e657041bf8a056e7ef9c281f
2e73636f69a457dca3bdc3d142794220bbd4ac257969d727bd90673a03d2
5f887361f782f610ce4d1ca4ffe2b6023a183a68026b8e9bc758a9d7076e
b51840a9006b86477bc69273e1cfb119e0670b10b8d7144262695d250e81
5c64961b155d0c51d562f8992b1ac47cad9c1c395692736a7f8653bbf43d
3e04e9f6a1ac11b1d8f0d9357349776a82

D.2.5 Leniency in checking the length octet of DigestInfo [ML#4].
The way an ASN.1 encoding structure (identifier octets (Type);
length octets (Length); contents octets (Value), TLV for short) is
being parsed in these implementations is that, simply put, it takes a
chunk of data, with its length and then parses it to return a pointer
to its header (type section of TLV). To do so, it considers the first
byte as header, reads the second byte as length section, and lastly
checks if the current position (which now refers to the first byte of
value section) has not passed the end position (previously computed
from the data length input). It also checks whether the length field
of a TLV is not greater than what has remained to read (i.e., end
- pos). So, as long as the value for the length section of a TLV is
not greater than what has left to read, everything checks out; even
though the value is less than the correct value. The length field for
DigestInfo TLV suffers from this leniency; so, lower value than
the correct length will also be accepted.

Example: Incorrect value for DigestInfo’s length octet as 0x0F
is accepted by the verifier instead of the correct value 0x31:
EM = 0x0001ff

ff
ff
ff
ff
ff
ff00300f300d
0609608648016503040201050004207509e5bda0c762d2bac7f90d758b5b
2263fa01ccbc542ab5e3df163be08e6ca9

S = 0x023d1761649fdc744bbcf7464ae4de054a2a283a0082ed7153325daf81
13410d112259faa47c5f7c215c369d989cc95e3d6482a4d8e5fe039c6282
2d5c01c51b51babc97585034360d9397fc375fe185d007d08af2fc80b1d6
948ebc406cd7a615659b08927a25b80137202dff36034d57e9b9c181306b
858010e6df04bfc9ddc960cba2b7479279e92b936a3a152ec46320d01380
70d44a7d98bec5cc3c1dd0de33f589af3480d8894ab61f0d03db4fae97bf
83defa5c7db2dd11823156b0a0976297efa46e3f86f363af57c4bbb17736
d5c55d0d5ab92ea062a0dc51294e0071ec26e051ecd1cff4aec04fdcda4a
6eb1ca1331d7838c7df3ffd5a9039be0a0

D.3 RELIC (git commit 32eb4c25)

D.3.1 Leniency in checking the prefix bytes (CVE-2020-36315) [SF#1].
The prefix bytes in the encoded message EMv consists of the lead-
ing byte (with value of 0x00), block type byte (0x01 for signature
scheme), and padding bytes with an appropriate length to make
the whole encoded message length equal to the public modulus
length, where every byte of padding bytes has a value of 0xFF
while 0x00 byte is used to indicate the end of padding. The imple-
mentation is, however, lenient in parsing these prefix bytes, and
thus open the door for a signature forgery attack. pad pkcs1()
function in the implementation is responsible to strip off such
prefix bytes. The first problem happens because of the way the
leading byte and the bock type checks are being handled. As can
be seen in the below pad pkcs1() function snippet taken from
src/cp/relic cp rsa.c file, the leading byte and block type
are being read and if they are not 0x00 and 0x01, respectively,
the result becomes an error (lines 9 and 15). However, instead of

returning right away from the function once the error has been
observed, it continues its operation and later on the result vari-
able is overwritten in line 38. The second issue which worsen the
situation is the next do-while operation on the subsequent bytes
for parsing the padding bytes (line 17 to 21). This loop keeps track
of the number of bytes left to be read and it reads the encoded
message buffer byte by byte. However, according to the loop exit
condition, it leaves all padding bytes unchecked and skips them
until it sees the end of padding (0x00). So, any value, except 0x00,
will be accepted as a padding byte.
1 static int pad_pkcs1(bn_t m, int *p_len, int m_len,

int k_len, int operation) {
2 ...
3 switch (operation) {
4 ...
5 case RSA_VER:
6 m_len = k_len - 1;
7 bn_rsh(t, m, 8 * m_len);
8 if (!bn_is_zero(t)) {
9 result = RLC_ERR;
10 }
11 m_len--;
12 bn_rsh(t, m, 8 * m_len);
13 pad = (uint8_t)t->dp[0];
14 if (pad != RSA_PRV) {
15 result = RLC_ERR;
16 }
17 do {
18 m_len--;
19 bn_rsh(t, m, 8 * m_len);
20 pad = (uint8_t)t->dp[0];
21 } while (pad != 0 && m_len > 0);
22 if (m_len == 0) {
23 result = RLC_ERR;
24 }
25 /* Remove padding and trailing zero. */
26 id = hash_id(MD_MAP, &len);
27 m_len -= len;
28
29 bn_rsh(t, m, m_len * 8);
30 int r = 0;
31 for (int i = 0; i < len; i++) {
32 pad = (uint8_t)t->dp[0];
33 r |= pad - id[len - i - 1];
34 bn_rsh(t, t, 8);
35 }
36 *p_len = k_len - m_len;
37 bn_mod_2b(m, m, m_len * 8);
38 result = (r == 0 ? RLC_OK : RLC_ERR);
39 break;
40 ...
41 return result;
42 }

In order to reproduce triggering this bug, the below concrete val-
ues, found by Morpheus, can be used given the parameter settings
provided in section B.

Example: 202 garbage bytes (0x88s) are added before the block
type byte (0x01) without including padding bytes (0xFF bytes).
EM = 0x0088

88
88
88
88
88
8801003031300d
0609608648016503040201050004207509e5bda0c762d2bac7f90d758b5b
2263fa01ccbc542ab5e3df163be08e6ca9

S = 0xbce78df677f4fa3ab89a4efd02872b3b4f41c75020f08c3e33f2096b56
ece1bc789b84372a8dfbf450529259a3279f67f2e8020fbdb30055dba8e8
7f446236c5fb8677c28f47677225a4ae5a4e4f9c8b8b7a6384fdda87858d

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2493

7eae0a8710a55d57d55c886c4f651abb9fc80be21da9192c6595c54c2900
6267bf95b67dd57d486af8c83a917dbaf20120d57e6da00a88d097ebbfbf
60145cad918451be667e5ddc7c1884df9020f291bc1768ba46d31a0b0a47
a69af912727ca2a5ee04c6b5755efe11a62ec4971e5612cf7dbcd7cada82
a38d7ddab7584e6a38fc514aedb345168bc8488fddc4c53ab93eab91b457
f62326fcc0f33a643362aee18636ba3ebd

D.3.2 Buffer overflow caused by trailing garbage bytes (CVE-2020-
36315) [BO#1]. The implementation does not properly check that
after the hash value bytes in T, there are no trailing garbage
bytes. According to the implementation of RSA PKCS#1-v1.5 signa-
ture verification, cp rsa ver() function in snippet below, once
pad pkcs1() function is called to strip off EMv prefix, the counter
referring to the end of padding is updated such that to indicate
the beginning of the hash value portion. Then, all checks are done
to make sure the encoded message’s ASN.1 related bytes, right
before hash value, matches up with the expected bytes (calculated
by hash_id()). However, neither pad_pkcs1() function nor the
callee checks that the hash value bytes has no trailing garbage bytes
(i.e., the length of hash value bytes are equal to the expected hash
length). This trailing garbage bytes can be added by borrowing
bytes from the padding bytes to make sure the length of malformed
encoded message is not changed. Now after unpadding and know-
ing the position of hash value bytes, the implementation copies
everything from hash value to the end of encoded message into
another memory space (pointed by h1 in the code) to be compared
with the computed hash value (pointed by h2). Then, the compari-
son takes place to compare them with respect to the expected hash
length, and thus the trailing garbage bytes are ignored, if there is
any.

Example: 202 tailing garbage bytes (0x88s) are added after the
hash value bytes, causing segmentation fault.
EM = 0x0001003031300d0609608648016503040201050004207509e5bda0c762

d2bac7f90d758b5b2263fa01ccbc542ab5e3df163be08e6ca98888888888
88
88
88
88
88
88
8888888888888888888888888888888888

S = 0x36262822b5089bef18475b37fe61295421c76465cef497440686dc624a
3f1ed51e82d609211d3754efc785c1b1603259c1f346f54ecea07393088f
b2c2907c7f3018df2d0610f8492b819fa53b56a503cab1ff730aa2181e01
d8e4021fef404bc891e13ceedae4d5ddc1f3a5daf6716e6bb527c8bed032
266f3b3fddee11ae0d805afb768715e5ba78d37e8acef313919f38665e15
914efb4d8e0031a6c0f59f7d94f11e450edfed50095a3688d1ac28845894
c642e303a170881b83d2ad0a443bcf2beeabf2d7e2dd8f9761b26e860a5c
cbb52c05d9558ec0a36cc1205ad62ac6b13e52f6a0f8a620bf9698cbeeb5
370057dfc5df742fc7b9fe6839bf2dd4bb

D.4 phpseclib v3.0 (relaxed mode)

D.4.1 Leniency in checking parameter field (CVE-2021-30130) [SF#1].
The implementation in the relaxed mode, uses the parsing-based
(i.e., decoding-based) approach to extract hash value and hash func-
tion from the encoded message. It then applies the hash func-
tion (whose ID is extracted from the encoded message) to the
received message in order to obtain hash value, which is then
compared with the extracted hash value from the encoded mes-
sage. More specifically, it applies decodeBER() on the ASN.1 por-
tion of the encoded message to obtain TLVs in the form of its
internal structure (called $decoded). It then calls asn1map() func-
tion to extract DigestInfo (i.e., hash function OID and parameter

(digestAlgorithm) as well as the hash value (digest)). This is
done by providing a blueprint specifying how the TLVs are sup-
posed be nested given their types (i.e., their identifier octets). More
specifically, the blueprint mapping specifies, we should have a se-
quence TLV, that has two children called digestAlgorithm and
digest, where digest has octet string type (0x04 as identi-
fier octet), and digestAlgorithm is a sequence TLV having two
children. First child is algorithm with object identifier type (0x06)
and second child is called parameters whose type is specified as
any (but not NULL type). This leniency, at the very least, can cause
interoperability issue. The implementation mistakenly accepts a
signature whose encoded message has any type (than NULL type)
in its parameter TLV section. But the implication can get much
worse because the parameter value (i.e., the content octets of the
parameter section) are not being checked to actually match the
NULL type. That is, the implementation does not verify that: (i) the
parameter value should be absent; and (ii) the length octet is 0x00.
Instead, as asn1map() function is recursively called to get to the
parameter section, it first decodes the type to understand what this
type is, because according to the blueprint mapping it can be any
type. Once decoded, if it is NULL type, the code just returns empty
string, ignoring the actual content octets. But the parameter type
does not even have to be NULL type as mentioned before, and some
other types work as well because the asn1map() callee accepts
any type for the parameter type. Considering that length octet here
uses the definite short form, we are able to inject 79 random bytes
as parameter value and get validated, given our settings described
in section B. Since the relaxed version accepts BER, and as we know
in BER, indefinite form is also allowed for the length octet of the
top ASN.1 sequence, we are able to stack more garbage bytes into
the parameter value (i.e., content octets) and extend the unchecked
area from 79 bytes to 114 bytes out of 256 total bytes.

By performing root cause analysis, we can spot in
line 5 in the snippet below from asn1map() function in
phpseclib/File/ASN1.php that any instead of NULL type is
used in the mapping blueprint.
1 public static function asn1map($decoded , $mapping ,

$special = [])
2 {
3 ...
4 switch (true) {
5 case $mapping['type'] == self::TYPE_ANY:
6 $intype = $decoded['type'];
7 ...
8 $inmap = self::ANY_MAP[$intype];
9 if (is_string($inmap)) {
10 return [$inmap => self::asn1map($decoded , ['

type' => $intype] + $mapping, $special)
];

11 }
12 break;
13 ...

Also, as shown below in asn1map() function, when decoded
type is recognized as NULL, then the content octets are not even
checked here to be absent nor are passed to be checked by callee.
1 ...
2 case self::TYPE_OCTET_STRING:
3 return $decoded['content'];
4 case self::TYPE_NULL:
5 return '';
6 case self::TYPE_BOOLEAN:

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2494

7 return $decoded['content'];
8 ...

Here is another snippet taken from the func-
tion rsassa pkcs1 v1 5 relaxed verify() in
phpseclib/Crypt/RSA/PublicKey.php, where whatever
is decoded as parameter is not being checked at all. The implemen-
tation only checks the hash algorithm and uses that to verify the
signature.
1 $decoded = ASN1::asn1map($decoded[0], DigestInfo::

MAP);
2 if (!isset($decoded) || $decoded === false) {
3 return false;
4 }
5
6 if (!isset($oids[$decoded['digestAlgorithm']['

algorithm']])) {
7 return false;
8 }
9
10 $hash = $decoded['digestAlgorithm']['algorithm'];
11 $hash = substr($hash, 0, 3) == 'id-' ?
12 substr($hash, 3) :
13 $hash;
14 $hash = new Hash($hash);
15 $em = $hash->hash($m);
16 $em2 = $decoded['digest'];
17
18 return hash_equals($em, $em2);

Reproducing this bug can be done using the below concrete
values, found by Morpheus, given the parameter settings provided
in section B.

Example: 114 garbage bytes are added by misusing indefinite
form of length octet in BER and value of parameter TLV being not
checked:
EM = 0x0001ff

ff
ff00
3080307f0609608648016503040201057288888888888888888888888888
88
88
88
888888888888888888888804207509e5bda0c762d2bac7f90d758b5b2263
fa01ccbc542ab5e3df163be08e6ca90000

S = 0xac9e1f97acdbcd247ea79013d07e2f9ffe3da45f42cbf43c1a425524c6
e4fe7242149cd43cbcf7c23cb64786e3b8dbcb5652ecf5009836f01f07ed
d10c0a437291728d76049b17a624151c102efe304cae1c27939a856f9a1b
14f296ff75702a6a53f47e52d46354966ba083fbb749a07b2b14509ab4c5
22f6b3e48f9c78ab467a2bbfdf16cdcdd7bba3045ee7c4413e175b712f39
5a8ae4dde7af82062facf214aa4f830e38a4f0aa8cfa2c3dcf74a228a7dc
10b6ffb2ea3bcc4ea3a8a3c597c3be80fe2ba0bc0334693b834c03b8bc83
4009069f53d2641f953b4aab00b14baf873cbbb95faa1f2f18197896b6ef
8df3d413ea08e2b3fb31d7dba7eb5c4de8

D.4.2 Leniency in decoding hash function ID’s content octets [ML#1].
To encode Object Identifier to an ASN.1 DER/BER encoded string,
there are some specific instructions to follow [10]. But to the extent
related to this vulnerability, any octet value less than 128 will be
encoded as is in one byte, while any octet greater than or equal
128 (in decimal) will be encoded using transitional byte (or bytes)
and remaining value byte. For example, in SHA-256 OID, which is
2.16.840.1.101.3.4.2.1, the forth octet, 1, will be encoded as
0x01, while the third octet, 840, will be encoded as 0x8648, where
0x86 is the transitional byte and 0x48 is the remaining value byte.
During the decode operation, the reverse needs to be done to extract
the OID. However, the phpseclib v3.0 (relaxed mode) has a leniency
in decoding an OID octet whose value greater than or equal 128.

Example: 79 garbage bytes (0x88s) are appended to a valid
SHA-256 OID (we can even add more garbage bytes, 116 bytes,
by misusing indefinite form of length octet in BER and removing
parameter TLV):
EM = 0x0001ff

ff
ff
ff
ffffffffffff003080305c06586086480165030402018888888888888888
88
88
8888888888888888888888050004207509e5bda0c762d2bac7f90d758b5b
2263fa01ccbc542ab5e3df163be08e6ca9

S = 0x2d8c20ccaf93bce59e98623997f9c8e4b52cd5f2f1f0541aea19c12e2b
31ccd3ef7d606940c6e626ed713ce318f082c56a40088167a490b54ecf24
6a8b0e4565afe8d8808587e402a6c607a4891efef0b29f0dbb534ce4c4a6
52f06f6dd5814636aa252bac8aa94b0c53a4ac5eb28ec8384b7d60731ebb
a132a898a738b02dae78f350985ea8ab5ecc8203b3d6a1c8f74d92ac979f
f31e9dea34c1411fee86ebaef2960cf03a5c9d5030d0cde0e27940a14a5d
9e9a85d4f3e6ecc97cbdfce8fa64fe8cb82fe9dc7a174f11249181b7145f
d3e8befb63f3f860db2f827b403d43b00e893036c75b6aee7d8d8de47570
7f5780315b1c44974bd5f8fb3350aec54c

D.4.3 Leniency in checking form bit of an identifier octet [ML#2].
Similar to wpa supplicant and hostapd, the phpseclib v3.0 (relaxed
mode) implementation has a leniency in handling an identifier octet
by failing to check the form bit as discussed in Appendix D.2.3.

D.4.4 Incorrect extended tag decoding of identifier octets [ML#3].
Similar to wpa supplicant and hostapd, the phpseclib v3.0 (relaxed
mode) implementation suffers from a logical flaw in decoding of
the extended tags for identifier octets, as discussed in Appendix
D.2.4

D.5 jsrsasign (v10.1.13)

D.5.1 Leniency in checking the prefix bytes [ML#1]. jsr-
sasign v10.1.13 is lenient in checking the prefix bytes and
some other invalid signatures are mistakenly recognized
to be valid. As can be seen in the below snippet from
RSAKey.prototype.verify() function in jsrsasign.js
file, the initial 0x00 bytes will be ignored when octet strings are
converted to integer (line 4)) and converted back to octet strings
after taking modular exponentiation to the power public exponent
(line 8). Then the naive regex pattern being used in line 9 to strip
the padding bytes only checks for the initial string 1f+00, if exists
any. That is, this pattern matching not only accepts the benign
case where we have block type byte followed by the padding string
(as in 0x01FF...FF00) but also accepts the prefix string such as
0x01F...FF00 where block type byte is 0x01F. Also, all padding
bytes can be removed (as in 0x01F00) or all can be of value 0x00
and still get validated by the signature verification.

1 RSAKey.prototype.verify = function (f, j) {
2 j = j.replace(_RE_HEXDECONLY , "");
3 j = j.replace(/[\n]+/g, "");
4 var b = parseBigInt(j, 16);
5 if (b.bitLength() > this.n.bitLength()) {
6 return 0;
7 }
8 var i = this.doPublic(b);
9 var e = i.toString(16).replace(/^1f+00/, "");
10 var g =

_rsasign_getAlgNameAndHashFromHexDisgestInfo(
e);

11 if (g.length == 0) {
12 return false;
13 }

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2495

14 var d = g[0];
15 var h = g[1];
16 var a = function (k) {
17 return KJUR.crypto.Util.hashString(k, d);
18 };
19 var c = a(f);
20 return h == c;
21 };

The below concrete values can be used to reproduce triggering
this bug, given the parameter settings provided in section B.

Example#1: Padding bytes with length 1:
EM = 0x0001ff003031300d0609608648016503040201050004207509e5bda0c7

62d2bac7f90d758b5b2263fa01ccbc542ab5e3df163be08e6ca9

S = 0x3fa376d1e4f51e9ff32636fe4d5c1b22b9f3d2e5d017ea79168e8e2973
16c4ca980827ad333f983bf9628e212a21f5fe5f2bde47088ef6b002cef3
1f9ce395abd6400f2ddfc8c2d152174ff47bf9e396843033c752df861305
4692ef0489fb59e3bd31e30ed18d83474c898236d4691b03d80c46c5fdbb
1e8c5901c65748d0fc6857b64cd6baab722ac827d1d1e2cb1638afebe835
47115747590eb83808e3dd99df942dc45461bb54efc5e52dc989af33c151
8612571288de34542241b3ae98a3600499206be8c2fb56b14ca967712161
666adabd8f79723d5b274c5cf8c84f5b2e158294662de15e897b298c9203
829bc846eeccce9b424d6cf7a1d9fa284e

Example#2: All zero bytes as prefix:
EM = 0x00

00
00
00
00
00
003031300d
0609608648016503040201050004207509e5bda0c762d2bac7f90d758b5b
2263fa01ccbc542ab5e3df163be08e6ca9

S = 0xe5c9db5fb1f81cf431a568caeea54e3e7a3d54a2ae16929ecf52da9ea7
018f18e7d3b2c3968a338d8b0cd0233c3073a25689da5310f52f2c14bf89
c81ab2d8e2a0a5bef4403199aaa7a2bef6af6b33b15828f646358193c4ef
8360c48e70f6e632b81432910b94b73854413fdb61f5377d88c5bb9848cd
301b6e7609f90f4af94cbfae053fe7e9bcedd1c905d8a26f01133607d8f8
1efe993ad9daf78188ddbe6496dd7b6bea2cb3617708b96ccd9e0ca2398d
d34d81567d2644f7a3ae4956a674e389aab9d8f1e732759209ddf17fd01c
c347e6c74464c03e4d57be3052582f04c8553a6ebc6046742c659d7f542b
4c72f8966dfde06036ad47d190dcddd03a

Infeasibility of signature forgery attack. As discussed above jsr-
sasign is willing to take a prefix and padding of all zeros. As such,
the remaining chunk (let us call itR) of ASN.1 DER structure (includ-
ing the hash value) would be 406 bit long, assuming the parameter
settings provided in section B. In other words, R < 2406. The dis-
tance between two perfect cubes of this size is less than 2272. In
that case, assuming that the output of SHA-256 hash function is
uniformly at random, the probability of hitting a perfect cube under
a chosen message is 2−272; at that cost it might be easier to just
factorize the 2048-bit modulus.

In fact, given the content of R that we need to match for the
SHA-256 case, the distance between two perfect cubes might even
be larger than the size of the hash itself (256 bit).

D.6 CryptX (v0.070) & LibTomCrypt (v1.18.2)

CryptX is a Perl module providing a cryptography based on LibTom-
Crypt library. Therefore, they suffer from the same minor leniency
as explained below.

D.6.1 Leniency in checking form bit of an identifier octet [ML#1].
Similar to wpa supplicant and hostapd, the LibTomCrypt library
(and thus CryptX) suffer from a flaw where the form bit of some
identifier octets are not being checked which can cause interoper-
ability issue. This issue affects octet string type used in hash
value encoding structure and the object identifier type of
hash ID encoding structure.

Example#1: Incorrect encoding of octet string type (0x24
instead of the correct encoding 0x04) used in the hash value struc-
ture is accepted as a valid signature’s encoded message by the
implementations.
EM = 0001ff

ff
ff
ff
ff
ff
ff003031300d06
09608648016503040201050024207509e5bda0c762d2bac7f90d758b5b22
63fa01ccbc542ab5e3df163be08e6ca9

S = 1ee08947536e6b11d8923c3b00061d26a6933b5345077ea0214fdcbcc1ad
68395008ff709117047e6b01dd2a371dfa032c0732abc86ab2e0273bbd0d
fe6b1c769e21bb9079982801d8f72e01be3244959312ab09bb8f88572dc2
3216719b9810c73edf826749604feb8da1345f83f0209271aca462c1235b
4cb4ba538f85a9c03dd1dde1856fe73fd86b95566df2dfe8b0895c34489b
97e02c8e48dabad7067619edec6267a776fa416fbcac0fcacf3efa7852ce
33ed63a9149c685c303d98c3dc37ee87521bc5b130377345fc95c87aa485
05470deaf6fb1064df041e3f03322b1ec90d3608deb17bf77f47066ecc6c
511bfba69eed6da42881dcce603fcb2a

Example#2: Incorrect encoding of object identifier type
(0x26 instead of the correct encoding 0x06) used in the hash func-
tion OID structure is accepted as a valid signature’s encoded mes-
sage by the implementations.
EM = 0x0001ff

ff
ff
ff
ff
ff
ff003031300d
2609608648016503040201050004207509e5bda0c762d2bac7f90d758b5b
2263fa01ccbc542ab5e3df163be08e6ca9

S = 0x8df69d774c6ac8b5f8aa16576ca37a4f948706c5daecb3c15cfd247a76
57616b2bbb786b50158cac8c23e3289d300d3fbb82380b8746d929df36bd
af43a5fc5d1d04c61c98d47c22de02d051be3ba9e42b1c47aa519266d4ca
e244e5ce99b24771a13a7c8c7b08868a3eccf70b4bc7570d5131a1ac8943
d91b0151c39da2ad75cd1b9a697d100eef6747217df581b272cfd1f549a9
01ff4951036a4eb28fd2ea1e9df3fa9fa457663f4259be8e5f2f2fb84f83
1a0ca5320e2b79f04a17830f43062c4c8fc0d0b1ff90567f3342d524f682
ca26661caadf4272f2585e6013a92bfa68de72fe6174096890e4296aedd7
2da43aa508007df53fb852bd7162ab635b

Session 10A: Crypto, Symbols and Obfuscation CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2496

	Abstract
	1 Introduction
	2 Preliminaries
	3 Overview of Morpheus
	3.1 Problem Definition
	3.2 Non-compliance and Security
	3.3 High-Level Approach of Morpheus

	4 The Oracle of Morpheus
	4.1 Formalizing the Specifications
	4.2 Developing the PKCS#1 Implementation
	4.3 Proof Sketch
	4.4 Extraction

	5 Testing with Morpheus
	5.1 Architecture of Morpheus
	5.2 Insight of Morpheus's Input Sampler
	5.3 Component Decomposition
	5.4 Combinatorial Testing
	5.5 Adaptive Test Generation

	6 Evaluation
	6.1 Findings
	6.2 Comparison with different approaches

	7 Related Work
	8 Discussion
	9 Conclusion
	References
	A Evolution of PKCS#1-v1.5 Standard
	B Parameter settings in Morpheus
	C Comparing Morpheus with previous work chau2019analyzing
	D Detailed findings
	D.1 node-forge (v0.10.0)
	D.2 wpa_supplicant & hostapd (v2.9)
	D.3 RELIC (git commit 32eb4c25)
	D.4 phpseclib v3.0 (relaxed mode)
	D.5 jsrsasign (v10.1.13)
	D.6 CryptX (v0.070) & LibTomCrypt (v1.18.2)

