
The Devil is in the Details:
Hidden Problems of Client-Side Enterprise Wi-Fi Configurators

Ka Lok Wu
Department of Information Engineering
The Chinese University of Hong Kong

Sha Tin, Hong Kong
klwu@link.cuhk.edu.hk

Man Hong Hue∗
Georgia Institute of Technology

Atlanta, GA, USA
hugohue@gatech.edu

Ka Fun Tang
Department of Information Engineering
The Chinese University of Hong Kong

Sha Tin, Hong Kong
1155126139@link.cuhk.edu.hk

Sze Yiu Chau
Department of Information Engineering
The Chinese University of Hong Kong

Sha Tin, Hong Kong
sychau@ie.cuhk.edu.hk

ABSTRACT
In the context of connecting to enterprise Wi-Fi, previous works
show that relying on human users to manually configure or enforce
server authentication often leads to insecure outcomes. Conse-
quently, many user credentials can potentially be stolen by the
so-called “Evil-Twin” (ET) attack. To ease the burden of human
users, various easy-to-use Wi-Fi configurators have been released
and deployed. In this work, we investigate whether such configura-
tors can indeed protect users from variants of the ET attack. To our
surprise, the results of our investigation show that all configurators
considered in the study suffer from certain weaknesses due to their
design, implementation, or deployment practices. Notable findings
include a series of design flaws in the new trust-on-first-use (TOFU)
configurator on Android (available since version 12), which can
be exploited in tandem to achieve a stealthy ET attack. Moreover,
we found that 2 open-source Android Wi-Fi configurators fail to
properly enforce server authentication under specific situations.
The cause of these could be partly attributed to the complexity
stemmed from certificate name matching as well as the limitations
of the Android API. Last but not least, we found that a commercial
configurator not only allows insecure Wi-Fi configurations to be
deployed, but also the covert injection of certificates on the user
device to facilitate interception of other TLS traffic, posing yet an-
other hidden security and privacy threat to its users. All in all, this
study shows that despite years of research on the topic, developing
a user-friendly yet reliable Wi-Fi configurator remains an elusive
goal, and thus the threat of ET attacks continues to be relevant. As
such, it is time to rethink whether the complexity of the standard
certificate chain validation is actually good for enterprise Wi-Fi.

∗Work done while the author was at The Chinese University of Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9859-6/23/05. . . $15.00
https://doi.org/10.1145/3558482.3590199

CCS CONCEPTS
• Security and privacy→Mobile and wireless security; Soft-
ware security engineering; Authentication.

KEYWORDS
WPA Enterprise, Evil-Twin, Authentication, TLS, Trust-on-first-use
ACM Reference Format:
Ka Lok Wu, Man Hong Hue, Ka Fun Tang, and Sze Yiu Chau. 2023. The
Devil is in the Details: Hidden Problems of Client-Side Enterprise Wi-Fi
Configurators. In Proceedings of the 16th ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec ’23), May 29-June 1, 2023,
Guildford, United Kingdom. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3558482.3590199

1 INTRODUCTION
Wi-Fi is a near-ubiquitous technology that enables Internet con-
nectivity to countless devices. Depending on how the user gets
authenticated, a Wi-Fi setup can be classified as the personal mode,
where authentication is achieved using a pre-shared key (PSK),
or the enterprise mode, where the authentication is done via the
IEEE 802.1X standard. Comparatively, the enterprise mode enables
a more fine-grained authorization and accounting, and is thus more
commonly used by large companies and educational institutes. In
fact, many organizations take advantage of IEEE 802.1X to reuse ex-
isting single sign-on (SSO) credentials for accessing their enterprise
Wi-Fi. Unfortunately, this also makes enterprise Wi-Fi a high-value
target for attackers, as stolen credentials can enable access to other
resources of the victim organization.

Typical in such setups, the client device, also known as the sup-
plicant, would establish a TLS tunnel with the authentication server
to protect the password-based user authentication. Unfortunately,
since the SSID itself is not cryptographically verifiable, an attacker
can launch a Wi-Fi setup broadcasting the same SSID, known as
an Evil Twin (ET), and trick nearby supplicants into connecting.
In this case, it is crucial for the supplicant to properly validate
the identity of the authentication server. Otherwise, the supplicant
could inadvertently perform the user authentication exchange with
an ET impersonator, and hand over the sensitive user credentials
to an attacker. Once the attacker obtained the credentials, further
access to and attacks against other organizational resources could

https://doi.org/10.1145/3558482.3590199
https://doi.org/10.1145/3558482.3590199
https://doi.org/10.1145/3558482.3590199

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Ka Lok Wu, Man Hong Hue, Ka Fun Tang, & Sze Yiu Chau

be possible (see for instance, [1]), especially when SSO is deployed
at the victim’s organization.

Similar to many other TLS applications, in most entperise Wi-
Fi setups, the validation of server identity is based on the sup-
plicant validating the certificate chain sent by the authentication
server. However, previous work found that many organizations
fail to prescribe secure Wi-Fi configurations that enforce proper
certificate validation and are thus vulnerable to ET-style credential
theft, in part due to the counter-intuitive designs and implementa-
tions of the configuration user interface (UI) found on mainstream
OSes [4, 15, 23]. In light of this worrisome situation, many new
configurators have been designed and deployed to help streamline
the enterprise Wi-Fi configuration process for users. For instance,
Android has introduced a new configurator since version 12, which
is easier to use than its conventional UI. Similarly, several configu-
rator apps exist, which can help users to configure enterprise Wi-Fi
by loading some network profiles pre-configured by IT admins.
Although previous work considered potential configuration issues
in the profiles used by some configurators [3, 15], the robustness of
the configurators themselves in terms of enforcing security policies
and protecting user credentials remain unclear.

In this work, we consider several new or popular configurators
that are already deployed in practice, and investigate if they can
indeed achieve the security guarantees expected from them, that
is, help users arrive at a secure enterprise Wi-Fi configuration and
thus prevent ET-style credential theft. Specifically, we focus on
the design and implementation issues hidden in the configurators
considered. For this, we rely on adaptive dynamic testing, manual
code review, and in some cases reverse engineering, to evaluate
and understand different aspects of such configurators. Notable
findings include several design flaws in the new trust-on-first-use
(TOFU) configurator on Android that makes it susceptible to ET-
style credential theft, as well as implementation issues that render
other configurators ineffective in enforcing the policies stipulated
by IT admins. Along the way of presenting our findings, we also
discuss their root causes as well as the possible ways of avoiding
pitfalls and improving the overall security of enterprise Wi-Fi. In
particular, the numerous problems stemmed from conventional
certificate validation prompts us to question whether that approach
is really beneficial to and necessary for enterprise Wi-Fi.

Overall, this paper makes the following technical contributions:

(1) We provide the first security evaluation of the new TOFU
configurator on Android 12, and explain its various design
flaws that, when exploited in tandem, could enable a stealthy
credential theft.

(2) We test two open-source Wi-Fi configurators used by thou-
sands of organizations to setup eduroam and other enterprise
Wi-Fi on client devices, and dissect the root causes of their
failures in enforcing critical checks under certain conditions.

(3) We investigate the attributes supported by the ChromeOS
built-in configurators, and provide a viable explanation to
some of the insecure profiles observed by previous work [15].

(4) We evaluate the pre-configured profiles of a commercial Wi-
Fi configurator not studied by previous work, and reveal their
configuration problems and other concerning behaviors that
can threaten user privacy.

(5) Based on empirical evidence, we discuss how the confus-
ing and restrictive API design of the underlying OS also
plays a part in spreading insecure Wi-Fi configurations, as
well as some practical considerations on TOFU and standard
certificate validation in the context of enterprise Wi-Fi.

2 PRELIMINARIES
2.1 Authentications in enterprise Wi-Fi
Under the IEEE 802.1X standard, enterprise Wi-Fi uses the Extensi-
ble Authentication Protocol (EAP), which is a generic framework
that allows one to build authentication methods. Historically, many
such methods exist [13], however, most contemporary production
deployments use TLS on top of EAP to provide the necessary se-
curity guarantees over the authentication exchange. Popular EAP
methods such as PEAP and TTLS are both variants of this. Under
this model, TLS provides end-to-end guarantees between the sup-
plicant and the authentication server, with the wireless access point
relaying messages between the two.

2.1.1 Server authentication. Just like any other applications of TLS,
in enterprise Wi-Fi, sever authentication under the EAP with TLS
model typically hinges on the validation of the server certificate.
There are different approaches of how this validation can happen.
For example, a system might implement the conventional certifi-
cate chain validation as outlined in [8]. To achieve the necessary
authentication guarantees following this approach, it is critical that
➊ a chain of trust can be formed from some predefined trust an-
chors by verifying the digital signatures of each certificate on the
chain, and ➋ the end-entity server certificate has a correct name,
either in the Subject field or the subjectAltName extension of the
certificate, that matches the hostname of the authentication server.
Alternatively, a system can also use pinning to validate the server
certificate. This is often done using a ➌ trust-on-first-use (TOFU)
approach, where the server certificate might be manually inspected
the first time it is seen or when a discrepancy is encountered, and
will then be memorized for future use.

Vulnerability to the ET attacks can then be explainedwith respect
to the approach used to validate the server certificate. Under the
conventional chain validation approach, if ➊ is skipped, then any
certificates, including the ones generated by an attacker, could be
accepted by the system. And depending on the trust anchors used
in ➊, failures in properly performing ➋ could allow the system to
accept certificates from a trusted commercial CA issued to domains
controlled by an attacker. Alternatively, if the manual inspection
in ➌ is skipped, the outcome would effectively be the same as
skipping ➊. So long as an ET attacker can obtain a certificate that
will be accepted by the supplicant, the user could be tricked into
performing client authentication with an impersonating ET setup,
thus enabling to credential theft.

2.1.2 User authentication. The actual implication of the ET cre-
dential theft depends on how user authentication is performed. A
typical enterprise Wi-Fi setup, especially when SSO is used, per-
forms some password-based user authentication1. This is commonly
known as the phase-2 authentication (whereas the establishment of
1In the EAP-TLS method, users can also be authenticated using certificates during the
TLS handshake, but this has seen limited usage in practice [13].

The Devil is in the Details:
Hidden Problems of Client-Side Enterprise Wi-Fi Configurators WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

TLS is the phase-1). Depending on the phase-1 EAP method, not all
phase-2 methods are supported. Commonly used phase-2 methods
include the PAP and GTC, as well as MSCHAPv2. When the server
authentication is broken in phase-1, the use of PAP and GTC would
allow the ET attacker to obtain the user password directly. For
MSCHAPv2, the attacker can instead record the challenge-response
transcript, and then either mount a dictionary attack to recover
the password [18], or spend at most 256 attempts to brute-force
the MD4 hash of the password, which would allow the attacker to
login as the user in future. Given that these commonly used phase-2
authentication methods fail to protect user credentials, the server
certificate validation in phase-1 is of utmost importance in prevent-
ing ET-style credential compromise. Unfortunately, as we will show
in later sections, despite their ease of use, many configurators fail
to adequately enforce this critical validation.

2.2 Experiment setup
To evaluate the design and implementation of different Wi-Fi con-
figurators, we built an ET-style test platform. Specifically, we used a
decade-old laptop to run Ubuntu and the open-source hostapd-wpe
software package, which is a patched version of hostapd that im-
plements the ET attack. This allows us to configure various server
parameters (e.g., certificate, ciphersuites, phase-2 methods, etc.),
and obtain user credentials if the attack succeeds. Given that this
portable attack setup can be easily built with off-the-shelf com-
modity hardware and software components, the ET attack is a very
realistic threat that cannot be ignored.

Our experiments are performed in a controlled environment. We
did not collect any real user credentials, and only used made-up
credentials in our testing. For the server certificates, depending on
the experiment, we either use a self-signed certificate chain, or the
ones that we purchased from a commercial CA and were issued
to a domain under our control. Since the API related to enterprise
Wi-Fi varies significantly across Android versions, we used several
devices (running different OS versions) available at our disposal
for testing. And unless explicitly stated otherwise, in the rest of
this paper, all the testing for Windows and macOS was done on
Windows 10 and macOS 11 Big Sur respectively.

3 NEW TOFU CONFIGURATOR ON ANDROID
Our first investigation concerns the new TOFU configurator on
Android, introduced since version 12. Unlike the conventional con-
figuration UI on older versions of Android where the user has to
choose the trust anchor for ➊ and type in the server hostname
for ➋, this new TOFU configurator follows approach ➌ and relies
on human users to manually check the certificate information. A
screenshot of it can be found in Figure 1. When a user first connects
to an enterprise Wi-Fi network, a prompt showing some attributes
of the certificate chain is shown to the user, and then the user
has to decide whether to accept the certificate chain. If the user
chooses to continue with the connection, certain attributes of the
certificate chain will then be pinned. Although it appears to be
a functional and reasonable design at first glance, we discovered
several weaknesses in this TOFU configurator in publicly released
versions of Android. We assume the goals of an ET-style attacker to
be ➀ stealing user credentials at first use, and ➁ making the system

memorize the correct information for future use, so that the attack
becomes stealthy. By exploiting the Android weaknesses in tandem,
both attack goals can be achieved.

Using the test platform described in Section 2.2 with several
certificate chains strategically crafted in an adaptive manner, we
black-box tested Android 13 on a Pixel 6, and constructed a state
machine of the TOFU configurator, which is shown in Figure 2. For
each transition in the state machine, the text before the / separator
describes the triggering condition, and the text after shows the
action taken by the Android system. The problematic transition
actions are shown in red color.
Send first, verify later. The first major flaw in Android’s new
TOFU configurator is that when the user connects to an enter-
prise Wi-Fi network for the first time, the credentials are sent to
the authentication server before the manual inspection prompt is
shown to the user. This is a severe design oversight, as an ET attack
setup that is already in place during the first connect could trivially
achieve attack goal ①.
What you see is not what you expect. A second flaw in the
TOFU configurator concerns the prompt shown to the user for
manual inspection of information regarding the certificate chain.
As shown in Figure 1, the prompt displays the following attributes
of the highest-level certificate on the chain that the system received
from the authentication server: (i) subject name, (ii) issuer name,
(iii) organization name, and (iv) prefix of its digital signature.

Interestingly, these attributes are not extracted from the end-
entity server certificate, but from the highest-level certificate on the
chain. We argue that this is a misguided design decision. In many
production setups, the certificate chain are issued by a commercial
CA. As such, the highest-level certificate on the chain sent by the
authentication server would most likely be of some commercial
intermediate CA (e.g., Sectigo RSA Domain Validation Secure Server
CA in Figure 1). In this case, it is impossible for users to properly
enforce ➌. Because the attributes shown are not tied to the server
in any meaningful ways, an attacker can simply go to the same
intermediate CA and purchase a certificate chain for an arbitrary
domain under control, and then use that chain in the ET attack setup.
The user would then see the exact same attributes and be tricked
into connecting, thus fulfilling attack goal ➀. In other words, unless
an organization chooses a dedicated private CA over commercial
ones for its enterprise Wi-Fi, it is impossible for the IT admin to
prescribe a Wi-Fi setup guide using this new TOFU configurator
while protecting the users from ET-style attacks, even if the first
flaw (send first, verify later) is fixed.
What you see is not necessarily authentic.More crucially, with
our black-box testing, we found that the signatures on the certificate
chain are not verified before the prompt is shown. Notice that all
four attributes shown on the prompt are directly from the certificate
chain, and none are computed locally by the Android system. As
such, the lack of signature verification means that all fields and
extensions on the certificates, including the four attributes shown
on the prompt, are practically unauthenticated inputs that can be
arbitrarily chosen by the attacker. In other words, an ET attacker
can prepare an attack certificate chain by replicating the one used
by the authentication server of the target organization, and then
replacing the genuine public key on the server certificate with one

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Ka Lok Wu, Man Hong Hue, Ka Fun Tang, & Sze Yiu Chau

Figure 1: The TOFU prompt. All 4 attributes shown on this
prompt can be spoofed by an attacker.

that has a known private key (e.g., a key pair generated by the
attacker). This way, even if the previous two flaws are fixed and the
prompt actually shows attributes of the server certificate, the user
could still be tricked into connecting to an ET attack setup after
manually verifying the four attributes shown on the prompt, thus
fulfilling attack goal ➀ once again.
What you see is not what it pins. Using our our test platform,
we discovered another interesting finding that, when exploited
together with the previous flaws, could allow an ET attacker to
achieve both attack goals ➀ and ➁.

We found that if the user continues to connect after seeing the
prompt, the system would extract from the received chain and
memorize only (i) the public key of the highest-level (CA) certificate,
and (ii) the server name from the leaf certificate. Then, in future
connection to the same Wi-Fi network, the system would use the
conventional chain validation with the memorized information
for ➊ and ➋. In other words, the server public key itself is not
memorized. Because of this, the attack certificate chain described in
the previous flaw not only tricks the users but also helps the system
to memorize correct information for future use. Thus when the user
connects to the legitimate Wi-Fi in the future, the connection will
proceed as normal, and the first-use ET attack goes undetected.
Attack-induced first-use. The attacks described above assume
the ET setup is already in place when the user performs the TOFU
configuration. One might question whether this is a realistic as-
sumption, or does it limit the practicality of the attacks. Based on
our testing, it turns out to be relatively easy for an attacker to in-
duce the Android system to go back to the first-use state. As shown
in the left-hand side of Figure 2, the Android system automatically
unpins an existing Wi-Fi TOFU setup after failing and retrying to
connect for too many times. As such, an attacker can place an ET
setup nearby, and once the connection fails for enough times, the
user will be forced to perform TOFU again.

Reflection: Designing an enterprise Wi-Fi configurator is
not only about the ease of use, and achieving the expected
security outcome requires careful analysis and testing. Un-
fortunately, Android’s new TOFU falls short in the latter.

CC: Certificate chain U: User 𝑡 = 4 based on our testing

pinned = pin(CC) = the public key of the CA and the subject of the leaf are pinned.

Figure 2: State machine for Android TOFU setup of one SSID

4 OPEN-SOURCEWI-FI CONFIGURATORS
In this section, we discuss the findings on 2 popular open-source
configurators that stemmed from the eduroam project, which is an
international roaming service that provides Wi-Fi access to travel-
ing users affiliated with educational institutions. Both configurators
help users to configure their device for enterprise Wi-Fi by pro-
grammatically loading some pre-configured profiles uploaded by
IT admins. After a successful configuration, server authentication
would then happen through conventional chain validation, with ❶

and ❷ using the parameters stipulated in the profile. Apart from the
eduroam network, some organizations also use these configurators
for their own Wi-Fi networks.

4.1 Flaws in the eduroam CAT Android app
The first open-source configurator that we consider is the eduroam
Configuration Assistant Tool (CAT), which is available on most
mainstream operating systems. On Google Play alone, the eduroam
CAT app has been downloaded for more than one million times. Pre-
vious work investigated and discovered several weaknesses in the
policy (configuration parameters) stipulated in the pre-configured
profiles [15], however, they did not consider whether the eduroam
CAT configurator can actually enforce those policies. With our test
platform and manual code review, we found a few implementation
flaws in the current version of eduroam CAT, which could lead to
improper enforcement of otherwise strong policies under certain
situations, thus opening door to the ET-style credential theft.

We found that under certain situations, the eduroam CAT An-
droid app could weaken the server name checking constraint used
in ➋. The eduroam CAT app fetches and parses the pre-configured
profile of an organization chosen by the user, and then invokes
various methods of the WifiEnterpriseConfig class from the
Android API [2] to actually setup the Wi-Fi connection on the
client device. The main problem is that eduroam CAT uses the
setSubjectMatch() method, which was introduced in Android
API level 18 but deprecated since level 23 [2], to set the final server
name matching constraint2.

2https://github.com/GEANT/CAT-Android/blob/f1053d54/src/uk/ac/swansea/
eduroamcat/WifiConfigAPI18.java#L204

https://github.com/GEANT/CAT-Android/blob/f1053d54/src/uk/ac/swansea/eduroamcat/WifiConfigAPI18.java#L204
https://github.com/GEANT/CAT-Android/blob/f1053d54/src/uk/ac/swansea/eduroamcat/WifiConfigAPI18.java#L204

The Devil is in the Details:
Hidden Problems of Client-Side Enterprise Wi-Fi Configurators WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

Unlike the newer setAltSubjectMatch() method introduced
since API level 23which can handlemultiple server names separated
by semicolons, the setSubjectMatch() method can only handle
one single server name. Because of that, when a pre-configured
profile stipulates multiple server names, eduroam CAT uses an
improvised algorithm to compute a common suffix that can be set
with setSubjectMatch(). The code for this algorithm can be found
in line 176–210 of the WifiConfigAPI18.java file3 in the eduroam
CAT source tree, which is also shown in Listing 1.

176 if (aAuth.getServerIDs ().size() >0)
177 {
178 String subjectMatch="";
179 if (aAuth.getServerIDs ().size() >1)
180 {
181 String subjectMatch_next=aAuth.getServerIDs ().get(0);
182 String subjectMatch_new="";
183 if (subjectMatch_next.indexOf(".") >0){
184 subjectMatch_new=subjectMatch_next.substring(

subjectMatch_next.indexOf("."));
185 subjectMatch=subjectMatch_new;
186 }
187 for (int serverCount =0; serverCount <aAuth.getServerIDs ()

.size(); serverCount ++)
188 {
189 subjectMatch_next=aAuth.getServerIDs ().get(serverCount

);
190 if (subjectMatch_next.indexOf(".") >0)
191 subjectMatch_new=subjectMatch_next.substring(

subjectMatch_next.indexOf("."));
192 if (subjectMatch.equals(subjectMatch_new)) continue;
193 else {
194 //error with serverIDs
195 StatusFragment.setDebug("ServerID error with profile

:"+subjectMatch+" and "+subjectMatch_new);
196 eduroamCAT.debug("ServerID error with profile:"+

subjectMatch+" and "+subjectMatch_new);
197 subjectMatch="";
198 break;
199 }
200 }
201 }
202 else subjectMatch=aAuth.getServerIDs ().get (0);
203

204 enterpriseConfig.setSubjectMatch(subjectMatch);
205 eduroamCAT.debug("subjectMatch="+subjectMatch);
206 }

Listing 1: algorithm for computing the name matching
constraint in eduroam CAT (WifiConfigAPI18.java)

Whenmultiple servers are specified in the pre-configured profile,
this algorithm always peels off the leftmost subdomain (line 184
and 191), and then try to see if the remaining suffix is shared by all
the server names (line 192). If so, use this suffix for name matching.
If not, an empty string will be given to setSubjectMatch() (line
197). Because of this, if the same server name a.b.c and a.b.c is
given more than once in a profile, the servername b.c, instead of
a.b.c, would be set and matched. Even more interestingly, if an
organization has two authentication servers on different second-
level domains, for instance, a.b.c and a.d.c, then an empty string
would be set and matched.

3https://github.com/GEANT/CAT-Android/blob/f1053d54/src/uk/ac/swansea/
eduroamcat/WifiConfigAPI18.java#L176

Proof-of-concept attack. At the time of testing, we targeted
the pre-configured profile of TU Graz4, which stipulates multiple
server names to be matched (zar.tugraz.at, zar1.tu-graz.ac.at,
zar1.tugraz.at, zar2.tu-graz.ac.at, zar2.tugraz.at), and specifies
the certificate of a commercial CA, Sectigo, as the trust anchor. Be-
cause of the bug outlined above, the actual server name matching
constraint given to setSubjectMatch() would become .at. We
then purchased a certificate from Sectigo for a .at domain under
our control, and used it in our test platform, which runs an ET
eduroam Wi-Fi. Then, we used the eduroam CAT app on an An-
droid 11 device to load the pre-configured profile of TU Graz, and
found that after configuring, the system accepts our certificate as
expected, and the user credentials are indeed sent to the ET setup.
Android’s loose matching logic. Worst yet, the API method
setSubjectMatch() onAndroid actually performs substringmatch-
ing instead of suffix matching. This is similar to the name matching
problem on ChromeOS observed by a previous work [15]. As such,
when eduroam CAT is used, any pre-configured profiles that use
commercial CAs as trust anchors could be attacked by an ET at-
tacker. The attacker could purchase a domain, then get a subdomain
satisfying the server name matching constraint stipulated by a tar-
get profile, and go to the trusted commercial CA and purchase a
certificate for that subdomain. Then this certificate can be used in
an ET attack setup and satisfy both ➊ and the substring matching
logic of ➋. We successfully reproduced this substring matching
weakness with our test platform and a certificate from the Let’s
Encrypt CA, targeting our own pre-configured profile.

4.2 A flaw in the geteduroam Android app
The second open-source configurator that we consider is gete-
duroam. Similar to eduroam CAT, geteduroam also helps users
to setup connection to eduroam and other Wi-Fi by fetching and
loading pre-configured profiles. In fact, it shares the same profile
repository with eduroam CAT, and can be regarded as the next gen-
eration of CAT. According to its official Website5, the geteduroam
Android app is intended to replace the eduroamCAT Android app.

Similar to eduroam CAT, with our test platform and manual code
review, we found a flaw in geteduroam that makes it fail to properly
enforce the policy stipulated in the profile under certain conditions.
Specifically, in the stable release of geteduroam version 1.0.21, the
application sets different strings for server name validation accord-
ing to the Android version of the devices. Listing 2, which captures
line 554–573 of WifiProfile.java in the geteduroam source tree6,
shows the developer comment which says Android 9 only supports
a single name given to the setDomainSuffixMatch() method. As
such, an improvised algorithm is used on Android 9 to compute
the longest suffix match of all the server names given in the profile.
For Android versions 10 or above, the setDomainSuffixMatch()
method supports multiple server names separated by semicolon, so
this computation is not needed.

Interestingly, the common suffix computation algorithm, which
is in line 287–312 of WifiProfile.java in the geteduroam source
4Only in a controlled environment, and TU Graz have since updated their profile.
5https://www.geteduroam.app/about/faq/
6https://github.com/geteduroam/ionic-app/blob/d8e08d48/geteduroam/plugins/wifi-
eap-configurator/android/src/main/java/com/emergya/wifieapconfigurator/config/
WifiProfile.java#L554

https://github.com/GEANT/CAT-Android/blob/f1053d54/src/uk/ac/swansea/eduroamcat/WifiConfigAPI18.java#L176
https://github.com/GEANT/CAT-Android/blob/f1053d54/src/uk/ac/swansea/eduroamcat/WifiConfigAPI18.java#L176
https://www.geteduroam.app/about/faq/
https://github.com/geteduroam/ionic-app/blob/d8e08d48/geteduroam/plugins/wifi-eap-configurator/android/src/main/java/com/emergya/wifieapconfigurator/config/WifiProfile.java#L554
https://github.com/geteduroam/ionic-app/blob/d8e08d48/geteduroam/plugins/wifi-eap-configurator/android/src/main/java/com/emergya/wifieapconfigurator/config/WifiProfile.java#L554
https://github.com/geteduroam/ionic-app/blob/d8e08d48/geteduroam/plugins/wifi-eap-configurator/android/src/main/java/com/emergya/wifieapconfigurator/config/WifiProfile.java#L554

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Ka Lok Wu, Man Hong Hue, Ka Fun Tang, & Sze Yiu Chau

tree7 and also shown in Listing 3, can output an empty string in 3
cases. First, if the multiple server names given in the profile are of
different forms, for example, one is an IP address and the other is a
domain name, then unsurprisingly, no common suffix can be found.
Second, even if all the server names are in the profile are domain
names, if they are on different top-level domains (TLDs), then no
common suffix can be found. Finally and more subtly, because the
algorithm does not normalize the names into lowercase before
computing the suffix, domain names of different cases (e.g., A.B.C
and p.b.c) would also lead to an empty common suffix.
Proof-of-concept attack. At the time of testing, we targeted the
pre-configured profile of Baskent Universitesi8, and ran geteduroam
on an Android 9 device. The profile specifies a commercial CA, Go-
Daddy, as the trust anchor, and stipulates two server names that
can be accepted: gunes.baskent.edu.tr and 193.255.45.5. Fol-
lowing the discussion above, in this case, the longest common suffix
given to the setDomainSuffixMatch() method will simply be an
empty string, effectively disabling ➋. We purchased a certificate
from GoDaddy for a domain that we control, and used it in our test
platform. After loading the profile, the Android system accepted
our certificate, and sent the user credential to our ET setup.
554 /∗∗
555 ∗ Get the string that Android uses for server name

validation.
556 ∗
557 ∗ Server names are treated as suffix , but exact string match

is also accepted.
558 ∗
559 ∗ On Android 9, only a single name is supported.
560 ∗ Thus , for Android 9, we will calculate the longest suffix

match.
561 ∗
562 ∗ On Android 10 and onwards , the string can be semicolon −

separated ,
563 ∗ which is what we will do for these platforms.
564 ∗
565 ∗ @return The server name
566 ∗/
567 private String getServerNamesDomainString () {
568 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.Q) {
569 return String.join(";", serverNames);
570 } else {
571 return getLongestSuffix(serverNames);
572 }
573 }

Listing 2: geteduroam adjusts the server name string based
on the Android version (WifiProfile.java)

287 /∗∗
288 ∗ Get the longest common suffix domain components from a

list of hostnames
289 ∗
290 ∗ @param strings A list of host names
291 ∗ @return The longest common suffix for all given host names
292 ∗/
293 static String getLongestSuffix(String [] strings) {
294 if (strings.length == 0) return "";
295 if (strings.length == 1) return strings [0];
296 String longest = strings [0];

7https://github.com/geteduroam/ionic-app/blob/d8e08d48/geteduroam/plugins/wifi-
eap-configurator/android/src/main/java/com/emergya/wifieapconfigurator/config/
WifiProfile.java#L287
8Only in a controlled environment without any real users.

297 for (String candidate : strings) {
298 int pos = candidate.length ();
299 do {
300 pos = candidate.lastIndexOf('.', pos − 2) + 1;
301 } while (pos > 0 && longest.endsWith(candidate.substring

(pos)));
302 if (! longest.endsWith(candidate.substring(pos))) {
303 pos = candidate.indexOf('.', pos);
304 }
305 if (pos == −1) {
306 longest = "";
307 } else if (longest.endsWith(candidate.substring(pos))) {
308 longest = candidate.substring(pos == 0 ? 0 : pos + 1);
309 }
310 }
311 return longest;
312 }

Listing 3: algorithm used by geteduroam to calculate the
longest common suffix of multiple hostnames
(WifiProfile.java)

4.3 How many are affected?
To better evaluate the impact of the aforementioned flaws, we
crawled 3854 pre-configured profiles from the eduroam CAT repos-
itory in Oct 2022. To decide whether a profile is vulnerable, we
consider two aspects: (i) whether it specifies a commercial CA as
the trust anchor, and (ii) whether the final server name matching
constraint to be enforced will be loose (e.g., empty strings and
TLDs). For (i), we parse all the CA certificates in a profile, and if
any of them can be matched to the trusted root CA certificates in
/etc/ssl/certs on Ubuntu 20.04, then we consider it to be using
a commercial CA. For (ii), we extracted the corresponding suffix
computation code from eduroam CAT and geteduroam, and ran
them through all the profiles to determine the outcome. In the end,
we found 1759 profiles that use commercial CAs as trust anchors,
which could be affected by Android’s substring matching weak-
ness. Concerning the problem in the common suffix algorithm of
eduroam CAT, we found 108 profiles to result in loose server name
constraints, 52 (1.35%) of which also use commercial CAs as trust
anchors, and are thus vulnerable. For geteduroam on Android 9,
we found 57 profiles to result in loose server name suffixes, 15
(0.39%) of which have commercial CAs as trust anchors and are
thus considered vulnerable.

4.4 API design and usage are both important
Although the flaws were found in the apps, we argue that to a
certain extent, Google’s Android API design also needs to take
some blame. Looking back, before API level 18 (Android version
4.3), there were simply no ways for a configurator app to even setup
the server name matching. Although newer API methods have
since been introduced, certain Android versions still suffer from the
bitter limitation of not being able to handle multiple server names,
which is occasionally needed in enterprise Wi-Fi, as organizations
might deploy multiple authentication servers for load-balancing
reasons. A restrictive API that cannot accommodate such realistic
needs then forces developers to improvise backward-compatible
solutions, which gives up on enforcing correctly stipulated security
policies, as demonstrated above.

https://github.com/geteduroam/ionic-app/blob/d8e08d48/geteduroam/plugins/wifi-eap-configurator/android/src/main/java/com/emergya/wifieapconfigurator/config/WifiProfile.java#L287
https://github.com/geteduroam/ionic-app/blob/d8e08d48/geteduroam/plugins/wifi-eap-configurator/android/src/main/java/com/emergya/wifieapconfigurator/config/WifiProfile.java#L287
https://github.com/geteduroam/ionic-app/blob/d8e08d48/geteduroam/plugins/wifi-eap-configurator/android/src/main/java/com/emergya/wifieapconfigurator/config/WifiProfile.java#L287

The Devil is in the Details:
Hidden Problems of Client-Side Enterprise Wi-Fi Configurators WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

On the other hand, instead of a one-size-fits all solution, de-
velopers should try to use the best API methods available for a
particular platform. For instance, eduroam CAT should use the
setAltSubjectMatch() and setDomainSuffixMatch() methods,
both introduced since API level 23, on Android version 6 or above.
This is particularly important when one considers the inherent
weakness of the substring matching logic used by the setSubject-
Match() method. Newer devices with better APIs should not be
suffering together with the older, more restrictive versions.

5 ISSUES OF CHROMEOS
5.1 ChromeOS built-in configurators
Unlike Android where apps can serve asWi-Fi configurators to load
pre-configured profiles, ChromeOS has this capability built-in and
does not require a standalone third-party app. Specifically, one can
manually load a network configuration profile (.onc file) through
the system portal. While discussing the issue of policy enforcement
with an engineer of the eduroam project, we realized that some
of the pre-configured profiles for ChromeOS are also limited by
the OS API design, which could partly explain the loose server
name matching constraints observed by a previous work [15]. This
situation is reminiscent of the improvised suffix computation algo-
rithms discussed in Section 4. The crux of the problem is that when
it comes to specifying server name matching constraints, older
versions of ChromeOS only supports the SubjectMatch attribute,
which cannot accommodate multiple common names, just like its
Android counterpart of setSubjectMatch() discussed above. Be-
cause of this, it is not surprising that some ChromeOS profiles are
found to be using loose name matching constraints (e.g., TLDs).

Two new attributes, in addition to the original SubjectMatch,
have since been added as part of the profile specification: Subject-
AlternativeNameMatch and DomainSuffixMatch, which will
match the Subject Alternative Name (SAN) in the certificate exten-
sion against the list of provided SANs, and any suffix of certificate
DNS SAN against the list of suffixes, respectively9. This is again rem-
iniscent of the new API methods introduced on Android since API
level 23 (setDomainSuffixMatch() and setAltSubjectMatch()).
However, an engineer from eduroam stated that all three attributes
on ChromeOS pose problems of their own, since the documentation
states that SubjectAlternativeNameMatch and DomainSuffix-
Match will only look at the SAN, but not the subject name. Section
5.2 of RFC5216 states that if both the subject name and SAN are
non-empty, both should be considered in the server name check-
ing [19]. Thus, none of the three attributes for name checking, as
described in the documentation, can fulfill the consideration pre-
scribed by RFC5216. At the same time, setting both SubjectMatch
and the SAN-checking attributes will require both the subject name
and SAN to be matched (enforcing a logical AND, instead of the
desirable logical OR).

5.2 Lenient configuration UI
While testing the enterprise Wi-Fi functionality of ChromeOS (Flex
version 107.0.5359.172), we noticed that the Wi-Fi configuration
UI makes inputs that are critical to checking certificate names
9https://chromium.googlesource.com/chromium/src/+/refs/heads/main/
components/onc/docs/onc_spec.md

optional to users. Specifically, none of the “Subject match”, “Subject
alternative name match” and “Domain suffix match” inputs are
required by the UI. This is highly reminiscent of the similar UI
design issues found on older versions of Android [15], which have
since been fixed. Because of this UI leniency, a careless user could
switch on➊ the chain of trust validation but leave➋ name checking
disabled. Under such a configuration, an ET attacker could attempt
the attacks discussed in Section 4.

Reflection: Designing an API (and UI) that can both accom-
modate flexible deployments and enforce secure configura-
tions, require understanding of actual deployment needs and
making careful design decisions. Unfortunately, the legacy
APIs for enterprise Wi-Fi on both Android and ChromeOS
are not the best examples of that.

6 A PROPRIETARYWI-FI CONFIGURATOR
In this section, we discuss SecureW2 JoinNow, a commercial Wi-Fi
configurator which provides services to businesses and schools
that use eduroam and other enterprise Wi-Fi. On Android, the Se-
cureW2 JoinNow app is in charge of fetching and applying the
pre-configured profile on the client device, which is somewhat
similar to the open-source ones discussed in Section 4. On macOS
and Windows, to get a pre-configured profile, the user is expected
to download and run an executable, which has the actual profile
encapsulated inside and will be applied during run time. For iOS
and ChromeOS, the pre-configured profiles are in their correspond-
ing OS-specific formats (i.e., .mobileconfig and .onc), which are
downloaded directly from Web without a dedicated app. As we are
more interested in the configurator apps and their own profiles,
iOS and ChromeOS are not considered in the rest of this section.

To collect the profiles used in this study, we determined how
the SecureW2 JoinNow app on various OSes obtain their profiles,
by using a man-in-the-middle (MitM) setup with mitmproxy [9] to
monitor the network traffic, and reverse engineering the apps if
necessary. After getting the profile repository URL, we then enu-
merated the domain IDs to obtain the corresponding pre-configured
profiles for Android, and executables for macOS and Windows. We
then used 7zip to extract the actual profile files from those executa-
bles. For all 3 OSes, the profiles are PKCS#7 signed data, with the
payload being an XML and signed by the SecureW2 CA. We then
parsed the XML for subsequent analysis. In the end, we successfully
crawled more than 470 unexpired profiles for each of the 3 OSes
(for the exact number, see the second column of Table 1).
Interesting Attributes. For the XML payload, we found several
interesting tags related to enterprise Wi-Fi connections: enable-
ServerValidation and certificate. Inside the certificate tag,
we also find the tags useSystemStore, useDpiSSL and useFirefox-
CertStore. In order to understand the meaning of these tags, we
used two methods: (1) parse all the profiles and find different values
in the tags, and test the profiles empirically with our test platform
to see if the differing tags have any effects on the Wi-Fi connection;
(2) reverse engineer the application to see if and how certain tags
are used in the code. Furthermore, to allow us to test arbitrary
profiles, we also patched the Windows executable to bypass the
code that verifies the signature of the profile. Additionally, some
of the profiles specify the use of Web-based single sign-on (SSO)

https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/onc/docs/onc_spec.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/components/onc/docs/onc_spec.md

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Ka Lok Wu, Man Hong Hue, Ka Fun Tang, & Sze Yiu Chau

OS\ Numbers Total Vulnerable
Windows 474 11 (2.32%)
Android 471 12 (2.55%)
macOS 475 10 (2.11%)

Table 1: The number of valid SecureW2 profiles crawled and
vulnerable on each mainstream OS.

login that invokes a browser to authenticate the user. In that case,
the browser would be in charge of performing the authentication
exchange, and thus we do not analyze the security of these profiles
in this study.
Vulnerable Wi-Fi Profiles. For the enableServerValidation
attribute, its name suggests that setting the attribute to false will
disable the conventional certificate validation ➊ and ➋. That is
indeed the case for Windows and Android before version 10, and
we tested that the ET attack will be successful.

To understand why the same attack outcome does not directly ap-
ply on Android 10 or above, we have to look at the Android API once
again. Since Android 10 (API level 29), the WifiConfiguration
API for setting up a Wi-Fi connection, was deprecated in favor
of the new WifiNetworkSuggestion API. For the WifiNetwork-
Suggestion API on Android 10, the trust anchor for ➊ and the
server name constraint for ➋ in a configuration can remain empty,
though the system always double checks with the user through a
prompt before actually loading the configuration. Following the
terminology used by a previous work [4], this could be classified as
an “User-Insecure” behavior, in the sense that an insecure configura-
tion needs explicit user confirmation before it gets loaded. However,
since Android 11 (API level 30), the WifiNetworkSuggestion API
mandates that both trust anchor for ➊ and the server name con-
straint for ➋ must be set. Otherwise, theWi-Fi configuration will be
ignored10. Since the SecureW2 JoinNow app uses the WifiNetwork-
Suggestion API on Android version 10 or above, pre-configured
profiles with enableServerValidation set to false, which are in-
secure on Android 9 or below, are only User-Insecure on Android
10, and simply not functional on Android 11 or above.

For SecureW2 JoinNow on macOS, when the enableServer-
Validation attribute is set to false, then it takes approach ➌, and
asks the user to decide whether to accept the server certificate (and
memorize its information for future use). As such, it is also User-
Insecure. When the enableServerValidation attribute is true,
then the system programmatically enforces certificate validation
without relying on manual inspection.

With this knowledge in mind, we can then evaluate how many
profiles are outright insecure or User-Insecure. The numbers can
be found in Table 1. Notice that in order to be accurate, we only
count the unexpired profiles that are not for setting up test or guest
networks. Finally, in order to validate our result, we also used our ET
setup to test all the profiles that have enableServerValidation
set to false. For all of the outright insecure and User-Insecure
profiles across Windows, macOS and Android, we were able to
perform the ET attack and get the user credentials.

10https://developer.android.com/guide/topics/connectivity/wifi-suggest

Discrepancies on different OSes. One interesting observation
is that the XML configurations across different OSes for the same
domain (organization) can differ.We found cases where the security-
critical attributes take different values on different OSes. In one
particular case, the value of enableServerValidation is set to
true in theWindows profile (with some CA certificates pinned), but
the corresponding Android profile has enableServerValidation
set to false. It is not clear to us why such discrepancies exist.
Injecting certificates on user device. Through experimentation,
we also found that the SecureW2 JoinNow app could inject cer-
tificates on the client device to facilitate TLS interception beyond
enterprise Wi-Fi.

For all three OSs, if the useSystemStore is set to true, the cer-
tificate will be installed into the system certificate store.

On Windows, the app always asks for administrative right via
the UAC prompt. Then, if the useSystemStore is set to true, the
certificates from the profile will be installed in the “Trusted Root
Certification Authority”. This allows a MitM with the private key
of one of those installed certificates to intercept other TLS applica-
tions that rely on this compromised root store. In our experiment
with a custom profile, we were able to intercept traffic to and from
the Edge browser. Alternatively, if useSystemStore is false but
useFirefoxCertStore is true, then the NSS certutil will be in-
voked to inject the profile certificates into the Firefox trust store,
which would then allow a MitM to intercept TLS traffic to and
from Firefox. Once again, we tested this with a custom profile. The
useDpiSSL attribute set to true appears to be effectively the same
as useSystemStore set to true, but shows an additional prompt
warning user about the injection of trusted CA certificate.

For Android 10 or below, if, in addition to useSystemStore being
true, useDpiSSL is also true, then a prompt will pop up, asking
the user to install the certificate to the user “Trusted credentials”.
Otherwise, the certificate will be installed to the “User credentials”
store without prompt, for use with Wi-Fi. We note that certificate
in the “Trusted credentials” store could be trusted by other apps if
they opt-in via the Network Security Configuration (NSC). A recent
work [16] found that around 8% Android apps have this opt-in,
which could be intercepted after the injection. Since Android 11,
apps can no longer invoke the user prompt to install the certificate
to the “Trusted credentials” store11. Instead, the user will have
to manually install certificates in system settings, thus making it
harder to inject and intercept. Based on our reverse engineering,
the useFirefoxCertStore tag is not used on Android.

For macOS, if useSystemStore is set to true, then the certificate
will be installed in the System Keychains after the user authenti-
cates at the “Make changes on certificate trust settings” prompt,
and will be trusted for all purposes, thus enabling interception of
other TLS applications. The useDpiSSL attribute set to true ap-
pears to be effectively the same as useSystemStore set to true.
If useFirefoxCertStore is set to true, then the Firefox autocon-
fig security.enterprise_roots.enabled is used to trust certifi-
cates from the macOS system store, and the Firefox settings will be
locked (grayed out).

11https://developer.android.com/reference/android/security/KeyChain#
createInstallIntent()

https://developer.android.com/guide/topics/connectivity/wifi-suggest
https://developer.android.com/reference/android/security/KeyChain#createInstallIntent()
https://developer.android.com/reference/android/security/KeyChain#createInstallIntent()

The Devil is in the Details:
Hidden Problems of Client-Side Enterprise Wi-Fi Configurators WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

It is conceivable that such certificate injection features can be
useful and convenient for IT admins to intercept and monitor traffic
in an enterprise setting, especially when the Bring Your OwnDevice
(BYOD) policy is becoming increasingly popular. However, since
we cannot see the user agreements and documentation from organi-
zations that attempt such injection, it is not clear to us whether the
users are notified of the implications of installing the profiles (and
its certificates), and whether that might create potential legal issues
concerning user privacy in certain jurisdictions. We leave the user
agreement analysis and potential legal arguments for future work.
Forcing weak ciphersuites. Apart from experimenting with the
various interesting attributes, we also observed an interesting case
that, for SecureW2 JoinNow on Windows, if a profile specifies the
use of TTLS as the EAP method and PAP for phase2 authentication,
the client will only offer 2 ciphersuites in its TLS Client Hello:
TLS_RSA_WITH_3DES_EDE_CBC_SHA and TLS_RSA_WITH_AES_128-
_CBC_SHA (in this order). Our original ET attack setup failed against
such profiles, because the default build of our OpenSSL did not
support these weak ciphersuites. After compiling a custom build of
OpenSSL to enable support for these ciphersuites, we were able to
successfully perform the attacks and get the credentials in cleartext.
The SecureW2 JoinNow apps on Android and macOS do not have
the same behavior of forcing weak ciphersuites, and it is not clear
to us why this is needed on Windows.
CA Certificates.We also extracted all the certificates embedded
in the profiles and look for similarities based on public keys and
common names. Overall, we extracted 1230 certificates from An-
driod profiles, 1786 certificates from Windows profiles, and 1782
certificates from macOS profiles. Over 90% of the certificates are
the same in Windows profiles and macOS profiles. For each OS,
around 14% of the certificates are self-signed certificates. The most
popular CA certificate has been used for approximately 280 times
across profiles of different OSes. Previous work noted that some
misconfigured setups might reuse default private keys in different
instances of the same appliance [10, 15]. We also tried to detect
cases where certificates are of different common names and share
the same public key, but we did not find any such cases.

Reflection: Although the overall percentages of vulnerable
profiles are small, the use of proprietary configurators does
not completely mitigate insecure enterprise Wi-Fi configu-
rations. One possible improvement is for the configurator
provider to detect and prohibit vulnerable profiles, similar to
what the new WifiNetworkSuggestion API on Android 11
does. Moreover, some organizations take advantage of the
configurator to also inject CA certificates on client devices,
raising additional security and privacy concerns. Ideally, this
should be clearly communicated to the users.

7 DISCUSSION
7.1 Responsible Disclosure
The flaws of Android’s new TOFU (Section 3) and the leniency of
ChromeOS’s UI (Section 5.2) have all been responsibly reported to
Google, which confirmed our findings and gave us some bug boun-
ties. Fixes are already planned for upcoming versions of Android
and ChromeOS.

We reported the issues in eduroam CAT (Section 4.1) to the
corresponding maintainers, and received positive acknowledgment
confirming our findings. Instead of fixing the eduroam CAT app,
however, the maintainers mentioned that for Android 8 or above,
they recommend the use of the new geteduroam app, and both
Android 6 and 7 have long passed the “End-of-life” (EOL) status and
are used by only a small portion of users. In particular, they also
argued that the substring matching of setSubjectMatch() is a
known problem, and the attacks outlined in Section 4.1 require the
affected organizations to be using commercial CAs as trust anchors,
which is against their official guideline of using a dedicated CA12.
As such, there is currently no plan to fix the eduroam CAT app. We
note that the eduroam CAT app continues to be available on Google
Play store and can still work on newer versions of Android (we
tested it on both Android 11 and 13). Without inspecting the Wi-Fi
setup guides from organizations, it is not clear whether they are
indeed migrating from eduroam CAT to geteduroam. Also, based on
our measurements in Section 4.3, around 45% (1759/3854) profiles
use commercial CAs as trust anchors, which suggest that the official
guideline of using dedicated CA might not be closely followed by
many organizations.

We also reported to the maintainers the geteduroam issue that
affects Android 9 users (Section 4.2). Fortunately, the issue was
found in a stable release (v1.0.21) on GitHub, and the current
release on the Google Play Store for Android 9 devices is of v1.0.16,
which uses both setDomainSuffixMatch() and setAltSubject-
Match() for checking the server certificate names, and is thus not
vulnerable based on our testing. The maintainers said that the
problematic version will not be deployed, and we noticed that the
next stable release on GitHub (v1.0.23) have since changed its
minimum SDK version to API level 30, meaning that it can no
longer be built for Android 9.

With respect to the vulnerable profiles of SecureW2 JoinNow, we
have reported their problems to the 15 organizations that prescribed
them. At the time of writing, we have received 2 replies stating that
the ticket is closed as the issue is already resolved.

Finally, we have reported the problem of weak ciphersuites for
TTLS on Windows (Section 6) to SecureW2, and also made a sug-
gestion on helping organizations to tighten the security of their
pre-configured profiles. We will continue to discuss with them on
how to mitigate these two problems.

7.2 TOFU versus TOOFU
Based on the state machine of the new TOFU on Android that
we observed, as well as the similar TOFU behaviors observed on
other OSes [4], an interesting discussion is on what it actually
means for a configurator to be adopting the TOFU approach. As
discussed in Section 3, the current TOFU configurator on Android
allows an attacker to repeatedly unpin the memorized information
and induce the first-use case. The same also applies to macOS,
iOS and Windows, which was deemed User-Insecure by previous
work [4]. An arguably better alternative might be trust-only-on-
first-use (TOOFU), in the sense that once pinning is successful
after first-use, the subsequent validation enforcement should be

12https://wiki.geant.org/display/H2eduroam/EAP+Server+Certificate+
considerations

https://wiki.geant.org/display/H2eduroam/EAP+Server+Certificate+considerations
https://wiki.geant.org/display/H2eduroam/EAP+Server+Certificate+considerations

WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Ka Lok Wu, Man Hong Hue, Ka Fun Tang, & Sze Yiu Chau

strict and programmatic. The onus should then be on the user
to take extra steps to unpin and reset the TOFU. This is actually
doable and has been adopted by some productions systems. For
instance, with OpenSSH, the first time that a user connects to a
host, the fingerprint of the key will be shown and is supposed to
be checked. Then the key fingerprint will be pinned by the system,
and checked programmatically in the future. If a known host sends
a different public key in a subsequent connection, the connection
will be stopped automatically and a vibrant warning message about
possible MitM attack will be shown to the user. To accommodate
benign key rotation events, the user would have to manually reset
the pinned information by removing the corresponding entries in
.ssh/known_hosts. In other words, an attacker cannot induce an
unpin behavior under this model. An open question is then whether
TOOFU is less usable than TOFU, which could be an interesting
research for future work.

7.3 The complexity of certificate validation
In their 1999 paper on evaluating IPSec [12], Ferguson et al. coined
the term “complexity trap”, which states that complexity is the worst
enemy of security. The authors went on to argue that the IPSec
standard has too many options and too much flexibility, and such
complexity is bad for a security standard. After observing the find-
ings from previous work [3, 4, 15, 23] as well as the flaws discussed
in previous sections, we cannot help but wonder if the same criti-
cism also applies to the conventional certificate validation with ➊

and ➋, and whether this approach actually benefits or hurts enter-
prise Wi-Fi. In the Web TLS case, since it is difficult to know ahead
of time what hosts will be visited by the browser, and that there
are billions of potential hosts, the flexibility and scalability offered
by conventional certificate validation are useful in server authen-
tication. That is, trusting a handful of root CAs allows a browser
to also establish trust on the identity of billions of Websites on the
Internet. However, in enterprise Wi-Fi, such a scalability challenge
does not exist, as one enterprise Wi-Fi SSID is usually served by a
very limited number of (usually one) authentication servers. There
does not seem to be a technical reason why approach ➌ with an
SSH-style TOOFU key pinning cannot work. We conjecture that
a carefully designed approach ➌ could be both more usable and
more secure for the users.

8 RELATEDWORK
The ET attack is a classic problem known to the community, and
has garnered the attention from the research community in recent
years, with a series of work dedicated to understanding the status
quo, evaluating the native UI designs and setup guides prescribed
by organizations [4, 15, 23] at various scales. Additionally, previous
work [3, 15] also considered configuration profiles and revealed
several problems in them. In contrast, this work focuses on various
forms of user-friendly configurators, and investigate how and why
they fail to protect users.

With many moving parts in the certificate standards, conven-
tional certificate validation is known to be very tricky to implement
correctly [5, 6, 14, 21]. In particular, the task of name matching is

also known to be a potential source of weakness [14, 20]. These ex-
isting research greatly echo with the enforcement flaws presented
in Section 4 as well as the complexity discussion in Section 7.3.

Finally, although some apps are found to be inherently vulnerable
to MitM interception due to improper implementation of certificate
validation [7, 11, 17], injecting CA certificates on the client device
could allow more apps to be susceptible to TLS interception [16],
which is why the discussion in Section 6 could be concerning to user
privacy. Outside ofWi-Fi configurators, many enterprise filters, anti-
virus and parental-control software also perform similar injection
and TLS interception for scanning harmful contents, though in some
case such interception opens up additional attack surface [10, 22].

9 CONCLUSION
In this paper, we investigate the robustness of enterprise Wi-Fi
configurators and see how they protect users from ET credential
theft and beyond. Our investigation found several design and imple-
mentation issues that are concerning. In particular, the new TOFU
configurator on Android is vulnerable to stealthy attacks and thus
fails to protect user credentials. We also dissected the implemen-
tation issues found on two open-source configurators that render
them incapable of properly enforcing the security policies stipulated
in pre-configured profiles, which are in part caused by the confus-
ing and restrictive API design from Android. Similar problems also
haunt ChromeOS, which might explain the insecure profiles ob-
served by a previous work. Finally, we considered a commercial
configurator, showed that some of its pre-configured profiles are
also vulnerable to the ET attack, and discussed its other hidden
behaviors that could damage user privacy. All in all, the findings
of this paper suggest that the threat of ET is far from over, and it
is perhaps time to rethink the merits of conventional certificate
validation in the context of enterprise Wi-Fi.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for helping us improve the
overall quality of our paper. This work was supported in part by
a grant from the Research Grants Council (RGC) of Hong Kong
(Project No.: CUHK 24205021), a grant from CUHK (Award No.:
4930961), as well as grants from the CUHK IE department (project
code: NEW/SYC and GRF/21/SYC).

REFERENCES
[1] 2020. Evil Twins, Eavesdropping, and Password Cracking: How the Office of

Inspector General Successfully Attacked the U.S. Department of the Interior’s
Wireless Networks. https://www.doioig.gov/sites/doioig.gov/files/FinalAudit_
WirelessNetworkSecurity_Public.pdf.

[2] 2022. WifiEnterpriseConfig | Android Developers. https://developer.android.
com/reference/android/net/wifi/WifiEnterpriseConfig.

[3] Alberto Bartoli, Eric Medvet, Andrea De Lorenzo, and Fabiano Tarlao. 2018. (in)
secure configuration practices of wpa2 enterprise supplicants. In Proceedings of
the 13th International Conference on Availability, Reliability and Security. 1–6.

[4] Alberto Bartoli, Eric Medvet, and Filippo Onesti. 2018. Evil twins and WPA2
Enterprise: A coming security disaster? Computers & Security 74 (2018), 1–11.

[5] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly
Shmatikov. 2014. Using frankencerts for automated adversarial testing of certifi-
cate validation in SSL/TLS implementations. In 2014 IEEE Symposium on Security
and Privacy. IEEE, 114–129.

[6] Sze Yiu Chau, Omar Chowdhury, Endadul Hoque, Huangyi Ge, Aniket Kate,
Cristina Nita-Rotaru, and Ninghui Li. 2017. Symcerts: Practical symbolic execu-
tion for exposing noncompliance in X. 509 certificate validation implementations.
In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 503–520.

https://www.doioig.gov/sites/doioig.gov/files/FinalAudit_WirelessNetworkSecurity_Public.pdf
https://www.doioig.gov/sites/doioig.gov/files/FinalAudit_WirelessNetworkSecurity_Public.pdf
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig

The Devil is in the Details:
Hidden Problems of Client-Side Enterprise Wi-Fi Configurators WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom

[7] Sze Yiu Chau, Bincheng Wang, Jianxiong Wang, Omar Chowdhury, Aniket Kate,
and Ninghui Li. 2018. Why Johnny Can’t MakeMoneyWith His Contents: Pitfalls
of Designing and Implementing Content Delivery Apps. In Proceedings of the
34th Annual Computer Security Applications Conference. 236–251.

[8] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. 2008.
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile. RFC 5280 (Proposed Standard). https://doi.org/10.17487/
RFC5280 Updated by RFCs 6818, 8398, 8399.

[9] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. 2010–.
mitmproxy: A free and open source interactive HTTPS proxy. https://mitmproxy.
org/ [Version 9.0].

[10] X de Carné de Carnavalet and Mohammad Mannan. 2016. Killed by proxy:
Analyzing client-end TLS interception software. In Network and Distributed
System Security Symposium.

[11] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. 2012. Why Eve and Mallory love Android: An
analysis of Android SSL (in) security. In Proceedings of the 2012 ACM conference
on Computer and communications security. 50–61.

[12] Niels Ferguson and Bruce Schneier. 1999. A cryptographic evaluation of IPsec.
(1999).

[13] Matthew Gast. 2005. 802.11 wireless networks: the definitive guide. O’Reilly Media,
Inc.

[14] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and
Vitaly Shmatikov. 2012. The most dangerous code in the world: validating SSL
certificates in non-browser software. In Proceedings of the 2012 ACM conference
on Computer and communications security. 38–49.

[15] Man Hong Hue, Joyanta Debnath, Kin Man Leung, Li Li, Mohsen Minaei, M. Ham-
madMazhar, Kailiang Xian, Endadul Hoque, Omar Chowdhury, and Sze Yiu Chau.
2021. All Your Credentials Are Belong to Us: On Insecure WPA2-Enterprise
Configurations. In Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security (Virtual Event, Republic of Korea) (CCS

’21). Association for Computing Machinery, New York, NY, USA, 1100–1117.
https://doi.org/10.1145/3460120.3484569

[16] Marten Oltrogge, Nicolas Huaman, Sabrina Amft, Yasemin Acar, Michael Backes,
and Sascha Fahl. 2021. Why Eve and Mallory Still Love Android: Revisiting TLS
(In) Security in Android Applications.. In USENIX Security Symposium. 4347–
4364.

[17] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz,
Murat Kantarcioglu, and Danfeng Yao. 2019. Cryptoguard: High precision detec-
tion of cryptographic vulnerabilities in massive-sized java projects. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
2455–2472.

[18] Bruce Schneier, David Wagner, et al. 1999. Cryptanalysis of microsoft’s PPTP
authentication extensions (MS-CHAPv2). In International Exhibition and Congress
on Network Security. Springer, 192–203.

[19] D. Simon, B. Aboba, and R. Hurst. 2008. The EAP-TLS Authentication Protocol.
RFC 5216 (Proposed Standard). https://doi.org/10.17487/RFC5216

[20] Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D Keromytis, and
Suman Jana. 2017. HVLearn: Automated black-box analysis of hostname veri-
fication in SSL/TLS implementations. In 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 521–538.

[21] Cong Tian, Chu Chen, Zhenhua Duan, and Liang Zhao. 2019. Differential testing
of certificate validation in SSL/TLS implementations: An rfc-guided approach.
ACM Transactions on Software Engineering and Methodology (TOSEM) 28, 4 (2019),
1–37.

[22] Louis Waked, Mohammad Mannan, and Amr Youssef. 2020. The sorry state of
TLS security in enterprise interception appliances. Digital Threats: Research and
Practice 1, 2 (2020), 1–26.

[23] Kailong Wang, Yuwei Zheng, Qing Zhang, Guangdong Bai, Mingchuang Qin,
Donghui Zhang, and Jin Song Dong. 2022. Assessing certificate validation user
interfaces of WPA supplicants. In Proceedings of the 28th Annual International
Conference on Mobile Computing And Networking. 501–513.

https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC5280
https://mitmproxy.org/
https://mitmproxy.org/
https://doi.org/10.1145/3460120.3484569
https://doi.org/10.17487/RFC5216

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Authentications in enterprise Wi-Fi
	2.2 Experiment setup

	3 New TOFU configurator on Android
	4 Open-source Wi-Fi configurators
	4.1 Flaws in the eduroam CAT Android app
	4.2 A flaw in the geteduroam Android app
	4.3 How many are affected?
	4.4 API design and usage are both important

	5 Issues of ChromeOS
	5.1 ChromeOS built-in configurators
	5.2 Lenient configuration UI

	6 A Proprietary Wi-Fi configurator
	7 Discussion
	7.1 Responsible Disclosure
	7.2 TOFU versus TOOFU
	7.3 The complexity of certificate validation

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

